
The Danet Workflow Component

User Manual

Dr. Michael Lipp, Danet GmbH

For version 2.1.2

The Danet Workflow Component: User Manual
by Dr. Michael Lipp
Copyright © 2002, 2003, 2004, 2005, 2006, 2007 Danet GmbH

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Soft-
ware Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Table of Contents
Introduction ..xv
1. Integrating the workflow component ... 1

1.1. Prerequisites ... 2
1.2. Preparing the database .. 2
1.3. Application and client assembly ... 4

1.3.1. Workflow APIs .. 5
1.3.2. Client JAR .. 5
1.3.3. The Danet AN utility library ... 5
1.3.4. Workflow module ... 6
1.3.5. The optional callback module .. 7
1.3.6. The utility module ... 8
1.3.7. Additional libraries ... 9

1.4. Deploying the component ... 9
1.4.1. Preparing the modules ... 9
1.4.2. Basic deployment ..13
1.4.3. Additional services ...13
1.4.4. Callback module deployment ...13

2. States and state transitions of processes and activities ..15
2.1. States of processes and activities ...15
2.2. State transitions of processes and activities ..16
2.3. Triggers of state transitions ..16
2.4. Exceptions ..18
2.5. Suspended state and deadlines ..19
2.6. Debugging workflows ...19

2.6.1. Enabling debug mode ...20
2.6.2. Effect on state changes ..20
2.6.3. Effect on exceptions ...20
2.6.4. Effect on deadlines ...21

3. Using the workflow component ...23
3.1. Component structure ...23
3.2. Client API ..24

3.2.1. Adapted OMG interfaces ...24
3.2.2. Extending the core interface ...26

3.3. Sample client ...26
3.3.1. Client code ...26
3.3.2. Running the sample client ...27

3.4. Resource assignment SPI ...30
3.5. Tool invocation SPI ..30

3.5.1. Invocation mode ..30
3.5.2. Accessing the workflow engine context ..31
3.5.3. Accessing JNDI ...31
3.5.4. Exception handling ..31

4. Process definitions ..33
4.1. Managing process definitions ...33
4.2. Process definition format ...33

4.2.1. Base format ..33
4.2.2. XPDL and the OMG API ..33
4.2.3. Specifying XML data ...33
4.2.4. Deadlines ...34
4.2.5. Defined extensions ...35
4.2.6. Miscellaneous ...38

4.3. Semantics ...38
4.3.1. Start and finish of a process ...38
4.3.2. Split and Join ..39
4.3.3. Condition evaluation ..41
4.3.4. Loops ..41
4.3.5. Deferred choice ...42

v

5. Tools ..43
5.1. Overview ..43
5.2. The XForms Tool ...43

5.2.1. Usage ..43
5.2.2. Defining an XForms application in the process definition45

5.3. JavaScript tools ..46
5.4. Jelly tool ...47

5.4.1. General usage ...47
5.4.2. LDAP tag library ...48

5.5. Mail tool ...51
5.6. XSLT tool ..52
5.7. Generic SOAP tool ...54
5.8. RPC SOAP tool ...55
5.9. Wait tool ..56
5.10. MBean invocation tool ..58
5.11. EJB invocation tool ...58
5.12. Channel based access ..59

5.12.1. Receiver tool ...60
5.12.2. Sender tool ...60
5.12.3. Generic HTTP Access ...61

6. The sample resource assignment service ..65
6.1. The sample assignment service ...65
6.2. Provided functionality ...65
6.3. The underlying resource management service ..66
6.4. Provided RMS implementations ..66

6.4.1. Database based RMS ..66
6.4.2. EIS based RMSes ..67

7. Wf-XML ...71
7.1. Installation ..71
7.2. Accessing Wf-XML Resources ...71
7.3. Properties ...72
7.4. Deviations from the Wf-XML 2.0 Standard ...72

7.4.1. ServiceRegistry ...72
7.4.2. Factory ..73
7.4.3. Instance ...73
7.4.4. Activity ...73

7.5. Example Client ..73
8. Management portlets ...75

8.1. Process definition portlet ...75
8.2. Process definition upload portlet ...75
8.3. Process portlet ...75
8.4. Deploying the portlet application in a portal ..78

8.4.1. General procedure ..78
8.4.2. Deploying in Jetspeed2 ...78

9. Known bugs and limitations ..79
9.1. Bugs ..79
9.2. Limitations ...79

A. The API documentation ...81
A.1. Package de.danet.an.workflow.omgcore ...81

A.1.1. Additional Information ...82
A.1.2. Exception AlreadyRunningException ..83
A.1.3. Exception AlreadySuspendedException ...83
A.1.4. Exception CannotChangeRequesterException84
A.1.5. Exception CannotCompleteException ...84
A.1.6. Exception CannotResumeException ...85
A.1.7. Exception CannotStartException ..86
A.1.8. Exception CannotStopException ..86
A.1.9. Exception CannotSuspendException ...87
A.1.10. Exception HistoryNotAvailableException87
A.1.11. Exception InvalidControlOperationException88
A.1.12. Exception InvalidDataException ..89
A.1.13. Exception InvalidPerformerException ...89
A.1.14. Exception InvalidPriorityException ..90

The Danet Workflow Component

vi

A.1.15. Exception InvalidRequesterException ...90
A.1.16. Exception InvalidResourceException ..91
A.1.17. Exception InvalidStateException ..91
A.1.18. Exception NotAssignedException ...92
A.1.19. Exception NotEnabledException ..92
A.1.20. Exception NotRunningException ..93
A.1.21. Exception NotSuspendedException ...94
A.1.22. Interface ProcessData ...94
A.1.23. Interface ProcessDataInfo ...94
A.1.24. Exception RequesterRequiredException ...95
A.1.25. Exception ResultNotAvailableException ..95
A.1.26. Exception SourceNotAvailableException96
A.1.27. Exception TransitionNotAllowedException96
A.1.28. Exception UpdateNotAllowedException ..98
A.1.29. Interface WfActivity ..98
A.1.30. Interface WfAssignment ... 101
A.1.31. Interface WfAssignmentAuditEvent .. 103
A.1.32. Interface WfAuditEvent .. 104
A.1.33. Interface WfAuditHandler ... 108
A.1.34. Interface WfCreateProcessAuditEvent ... 108
A.1.35. Interface WfDataAuditEvent ... 110
A.1.36. Interface WfExecutionObject ... 111
A.1.37. Class WfExecutionObject.ClosedState .. 120
A.1.38. Class WfExecutionObject.NotRunningState 123
A.1.39. Class WfExecutionObject.OpenState .. 125
A.1.40. Class WfExecutionObject.State .. 128
A.1.41. Interface WfObject .. 131
A.1.42. Interface WfProcess ... 132
A.1.43. Interface WfProcessMgr ... 135
A.1.44. Interface WfRequester .. 140
A.1.45. Interface WfResource ... 141
A.1.46. Interface WfStateAuditEvent ... 143

A.2. Package de.danet.an.workflow.api .. 144
A.2.1. Additional Information ... 145
A.2.2. Interface Activity .. 145
A.2.3. Class Activity.ClosedCompletedState ... 152
A.2.4. Class Activity.DeadlineInfo .. 155
A.2.5. Interface Activity.Implementation .. 157
A.2.6. Class Activity.Info .. 158
A.2.7. Class Activity.JoinAndSplitMode .. 160
A.2.8. Class Activity.StartFinishMode ... 163
A.2.9. Interface Activity.SubFlowImplementation 164
A.2.10. Interface Activity.ToolImplementation .. 166
A.2.11. Class ActivityUniqueKey .. 166
A.2.12. Exception AlreadyAssignedException ... 169
A.2.13. Interface Application .. 170
A.2.14. Interface Batch ... 171
A.2.15. Interface Batch.Context .. 171
A.2.16. Exception CannotRemoveException ... 172
A.2.17. Interface Channel .. 172
A.2.18. Interface Configuration ... 175
A.2.19. Class DefaultProcessData ... 176
A.2.20. Class DefaultRequester ... 177
A.2.21. Interface EventSubscriber ... 180
A.2.22. Interface ExecutionObject ... 182
A.2.23. Interface ExternalReference .. 184
A.2.24. Error FactoryConfigurationError .. 185
A.2.25. Class FormalParameter ... 186
A.2.26. Class FormalParameter.Mode .. 188
A.2.27. Interface GroupResource .. 190
A.2.28. Exception ImportException ... 190
A.2.29. Exception InvalidIdException .. 191
A.2.30. Exception InvalidKeyException ... 192

The Danet Workflow Component

vii

A.2.31. Class MethodInvocationBatch ... 193
A.2.32. Class MethodInvocationBatch.Result .. 195
A.2.33. Exception NoSuchResourceException ... 198
A.2.34. Interface Participant ... 198
A.2.35. Class Participant.ParticipantType ... 199
A.2.36. Class PrioritizedMessage .. 203
A.2.37. Class PrioritizedMessage.Priority ... 206
A.2.38. Interface Process ... 208
A.2.39. Interface ProcessClosedAuditEvent .. 210
A.2.40. Interface ProcessDefinition ... 211
A.2.41. Interface ProcessDefinition.PackageHeaderData 218
A.2.42. Interface ProcessDefinition.ProcessHeaderData 220
A.2.43. Interface ProcessDefinitionDirectory ... 225
A.2.44. Interface ProcessDirectory .. 230
A.2.45. Interface ProcessMgr ... 233
A.2.46. Interface RangeAccess ... 235
A.2.47. Interface RoleResource ... 236
A.2.48. Interface SAXEventBuffer .. 236
A.2.49. Interface Transition .. 237
A.2.50. Interface UserResource ... 240
A.2.51. Interface WorkflowService .. 240
A.2.52. Class WorkflowServiceFactory .. 250

A.3. Package de.danet.an.workflow.spis.aii ... 254
A.3.1. Additional Information ... 255
A.3.2. Exception ApplicationNotStoppedException 255
A.3.3. Exception CannotExecuteException ... 256
A.3.4. Interface ContextRequester ... 257
A.3.5. Interface ExceptionMappingProvider .. 257
A.3.6. Class ExceptionMappingProvider.ExceptionMapping 258
A.3.7. Interface ExecutionModeProvider .. 260
A.3.8. Interface ResultProvider ... 261
A.3.9. Class ResultProvider.ExceptionResult ... 262
A.3.10. Interface ToolAgent ... 263
A.3.11. Interface ToolAgentContext .. 265
A.3.12. Interface XMLArgumentTypeProvider .. 268

A.4. Package de.danet.an.workflow.spis.ras .. 269
A.4.1. Additional Information ... 269
A.4.2. Interface ActivityFinder ... 269
A.4.3. Error FactoryConfigurationError .. 270
A.4.4. Exception NoSuchActivityException .. 270
A.4.5. Interface ResourceAssignmentService ... 271
A.4.6. Class ResourceAssignmentServiceFactory 279

A.5. Package de.danet.an.workflow.spis.rms ... 281
A.5.1. Additional Information ... 282
A.5.2. Class DefaultGroupResource ... 282
A.5.3. Class DefaultResource ... 283
A.5.4. Class DefaultRoleResource ... 286
A.5.5. Class DefaultUserResource ... 288
A.5.6. Error FactoryConfigurationError .. 289
A.5.7. Interface ResourceAssignmentContext .. 290
A.5.8. Interface ResourceManagementService ... 291
A.5.9. Class ResourceManagementServiceFactory 294
A.5.10. Exception ResourceNotFoundException 297

A.6. Package de.danet.an.workflow.tools.util ... 298
A.6.1. Additional Information ... 299
A.6.2. Interface DirectInvocable ... 299
A.6.3. Class SimpleApplicationAgent .. 299
A.6.4. Interface SimpleApplicationDirectory ... 301
A.6.5. Class SimpleApplicationDirectoryEJB .. 306
A.6.6. Interface SimpleApplicationDirectoryHome 314
A.6.7. Interface SimpleApplicationDirectoryLocal 315
A.6.8. Interface SimpleApplicationDirectoryLocalHome 320
A.6.9. Class SimpleApplicationDirectoryLookup 320

The Danet Workflow Component

viii

A.6.10. Class SimpleApplicationInfo ... 321
B. The service provider classes ... 325

B.1. Package de.danet.an.workflow.ejbs.client ... 325
B.1.1. Additional Information ... 325
B.1.2. Class StandardWorkflowServiceFactory .. 325

B.2. Package de.danet.an.workflow.assignment .. 326
B.2.1. Additional Information ... 327
B.2.2. Class StandardResourceAssignmentServiceFactory 327

B.3. Package de.danet.an.workflow.rmsimpls.dbrms ... 329
B.3.1. Class DatabaseRmsFactory ... 329

B.4. Package de.danet.an.workflow.rmsimpls.eisrms ... 331
B.4.1. Class EisRmsFactory ... 331

B.5. Package de.danet.an.workflow.rmsimpls.eisrms.aci 332
B.5.1. Additional Information ... 332
B.5.2. Interface RmsConnection .. 332
B.5.3. Interface RmsConnectionFactory ... 334
B.5.4. Class RmsEntry .. 334

C. The demo applications .. 337
C.1. Installing a demo application ... 337

C.1.1. Installing JBoss ... 337
C.1.2. Create JBoss server configuration ... 337
C.1.3. Creating datasources etc. .. 339
C.1.4. Working with the Pluto based demo .. 342
C.1.5. Working with the Liferay based demo ... 343

D. Installing Liferay ... 345
D.1. Creating a configuration .. 345
D.2. Deploying Liferay ... 345

D.2.1. Disabling the default root context application 345
D.2.2. Unpacking the JBoss extension libraries .. 345
D.2.3. Unpacking the EAR ... 345
D.2.4. Fixing the transaction manager configuration 345
D.2.5. Adapting the portal configuration ... 346
D.2.6. Configure security ... 346

D.3. Providing a database .. 347
D.4. Starting JBoss ... 347

E. Notes ... 349
F. GNU General Public License .. 351

F.1. Preamble .. 351
F.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFIC-
ATION .. 352

F.2.1. Section 0 .. 352
F.2.2. Section 1 .. 352
F.2.3. Section 2 .. 352
F.2.4. Section 3 .. 353
F.2.5. Section 4 .. 353
F.2.6. Section 5 .. 353
F.2.7. Section 6 .. 354
F.2.8. Section 7 .. 354
F.2.9. Section 8 .. 354
F.2.10. Section 9 .. 354
F.2.11. Section 10 .. 355
F.2.12. NO WARRANTY .. 355
F.2.13. Section 12 .. 355

Index ... 357

The Danet Workflow Component

ix

x

List of Figures
1.1. Copying option ... 1
1.2. Copying destination ... 2
1.3. Creating the schema with the installer (1) ... 3
1.4. Creating the schema with the installer (2) ... 4
1.5. Application assembly ... 5
2.1. State transitions of execution objects ..16
3.1. Structure of the workflow component ...23
3.2. OMG core workflow model ..25
4.1. XOR-Split example ..39
5.1. XForm task list ..44
5.2. XForm sample ...44
6.1. Sample resource adapter configuration for JBoss ..68
6.2. Sample resource adapter configuration ...70
8.1. Process definition page ..75
8.2. Process list ..76
8.3. Process detail ..76
8.4. Events display ...77
8.5. Assignments display ...77
C.1. Create JBoss configuration .. 338
C.2. JBoss installation directory .. 338
C.3. Liferay configuration options ... 339
C.4. Setup wfdemo configuration .. 340
C.5. JBoss configuration directory ... 340
C.6. Advanced installation options .. 341
C.7. Choose demo application .. 342

xi

xii

List of Tables
2.1. Meaning of execution object states ..15
2.2. State transitions triggered by client API calls ...17
2.3. State transitions triggered by the engine ..17
5.1. Entries that can be specified as attributes ..49
7.1. Resource identification through the ReceiverKey ...71

xiii

xiv

Introduction
This document describes how to integrate and use Danet's J2EE based workflow component. The
Maintenance Guide [../../../../../../../api/de/danet/an/workflow/doc-files/maintenance-guide.html] de-
scribes the internal structures and design principles of the component.

What is Danet's workflow component?
Danet's workflow component is a J2EE based implementation of a workflow facility (workflow en-
gine) as proposed by the Workflow Management Coalition (WfMC) and the Object Management
Group (OMG).

The workflow component includes and is based on a set of JAVA interfaces that define an API for a
workflow management facility. These "omgcore" interfaces follow OMG's Workflow Management
Facility Specification, V1.2 very closely, while making some changes to adapt the CORBA service
to the established design practices for a Java API.

Danet's workflow component provides a collection of EJBs that implement the omgcore interfaces
together with some additional interfaces for tasks not covered by the OMG specification. The EJBs
are provided as a J2EE module that can be used in any J2EE compliant application server.

The workflow engine is designed as a J2EE component. It is intended to be integrated in an applica-
tion that requires a workflow engine. As a proof of concept and test environment, we provide a
demo application. The demo application consists of the workflow component and some additional
modules with a portal based GUI. Combined they provide a small workflow system that may be
used to get acquainted with the workflow engine. You can find more information about this demo
application in Appendix C, The demo applications [337]

Required knowledge
This manual assumes that you are familiar with Sun's Java™ 2 Platform Enterprise Edition Spe-
cification, v1.2.

Structure of the remaining document

Chapter 1, Integrating the workflow component [1]
describes all steps required to integrate the workflow component in an application.

Chapter 2, States and state transitions of processes and activities [15]
describes all defined and supported states and state transitions of processes and activities.

Chapter 3, Using the workflow component [23]
gives an inside view of the internal structure of Danet's workflow component.

Chapter 4, Process definitions [33]
helps managing process definitions.

Chapter 5, Tools [43]
lists the tools available in this workflow component. Tools are applications that can be started
from an activity.

Chapter 6, The sample resource assignment service [65]
shows how to develop or integrate a resource assignment service with the help of a simple ex-
ample.

Chapter 9, Known bugs and limitations [79]
lists the bugs and limitations of the workflow component currently known.

xv

../../../../../../../api/de/danet/an/workflow/doc-files/maintenance-guide.html
../../../../../../../api/de/danet/an/workflow/doc-files/maintenance-guide.html

Appendix A, The API documentation [81]
describes the java user interface of the workflow components in javadoc format.

Appendix C, The demo applications [337]
gives an inside view of the provided demo applications.

Documentation conventions
The following conventions will be applied throughout this document:

name to state a common name or id as it is used within the workflow component.

package for package name.

class for class names.

variable to describe a name of a variable.

Documentation conventions

xvi

Chapter 1. Integrating the workflow
component

The workflow engine is designed as a component. Therefore the typical usage is to integrate it into
your application. The following sections describe the steps required to do this. If you want to get ac-
quainted with the workflow engine by installing a demo application, please proceed to Appendix C,
The demo applications [337]. If you want to experiment with the API, step by step instructions how to
build a basic sample client can be found in Section 3.3, “Sample client” [26]. If you want to integrate
the workflow component with your application or understand its structure, continue reading here.

The binary distribution comes as an installer. In the simplest case, the installer only copies the lib-
raries and documentation to your filesystem. It provides, however, additional operations to config-
ure your application server and initialize a database. The installer is distributed as an executable jar.
It is invoked as "java -jar wfmopen-n.m-installer.jar".

The figures below show the installer screens for copying the components to the filesystem.

Figure 1.1. Copying option

1

1Most applications servers still support distributed transactions if one participating resource does not support distributed
transactions. If your application server does, you may use a database that does not support distributed transactions. Be pre-
pared to get some warnings from your application server, though.

Figure 1.2. Copying destination

In the sections following, the term $DIST represents the top level directory of the binary distribu-
tion, i.e. the installation directory that you have specified in the dialog above.

1.1. Prerequisites
WfMOpen requires JDK 1.4.2 (see Section 1.3.7, “Additional libraries” [9] for more details). Older
JDK versions back to 1.3 may work, tests have, however, only been made with JDK 1.4.2_15 and
JDK 1.6.0_02.

The workflow component requires a database that supports distributed transactions. WfMOpen re-
lies on operations on queues and on the database being made in a single transaction. This can only
be accomplished by using distributed transactions1. If you are looking for an OpenSource solution,
we recommend using MAXDB (formerly known as SAPDB).

1.2. Preparing the database
The workflow component relies on the presence of a number of tables in a database. The table defin-
itions are provided as file $DIST/lib/wfdemo/database/RDBMS-type/create.sql.
The files contain SQL statements that can be executed by appropriate database tools.

If you cannot find scripts for your database, you can still use the generic table definition in
$DIST/lib/wfdemo/database/database-schema.xml. It is suited to be processed by
the Apache DDLUtils (see Apache DDLUtils site [http://db.apache.org/ddlutils])2.

Prerequisites

2

http://db.apache.org/ddlutils
http://db.apache.org/ddlutils

2The provided RDBMS specific scripts were generated by processing this file with the DDLUtils for the specific RDBMSs.

As an alternative, the schema can be created by the installer. In order to do this, choose the option
"(Re-)create schema" as shown below.

Figure 1.3. Creating the schema with the installer (1)

You will now be prompted for an RBMS type.

Preparing the database

3

Figure 1.4. Creating the schema with the installer (2)

If you select one of the specific types, you will only be prompted for database instance information
and credentials on the next screen. If you select "Other", a generic dialog prompts you additionally
for the driver class and a driver jar.

The installer then uses the DDLUtils to create the schema in your database. This will work for all
databases that are supported by DDLUtils.

1.3. Application and client assembly
The workflow component software consists of several JAR files (modules and libraries) that have to
be assembled into a J2EE application or have to be included in the classpath of a client. The figure
shows an overview of the JAR files and their usage.

Application and client assembly

4

Figure 1.5. Application assembly

The following sections describe each JAR file and its role in application assembly.

1.3.1. Workflow APIs
The specified workflow APIs (packages de.danet.an.workflow.omgcore and
de.danet.an.workflow.api, see Section 3.2, “Client API” [24]) are packaged in a separate
jar de.danet.an.wfcore-apis.jar located in the distribution directory
$DIST/lib/wfcore. Only this JAR file should be used in the classpath when compiling clients.
Consequently, it must also be included in the runtime classpath of a client.

1.3.2. Client JAR
The runtime-classes needed by a client that wants to use the workflow component are provided as
de.danet.an.wfcore-client.jar in $DIST/lib/wfcore. This JAR file is not self
contained, i.e. it relies on the presence of the workflow APIs
(de.danet.an.wfcore-apis.jar), the Danet AN utility classes
(de.danet.an.util.jar, see following section) and the additional libraries described in Sec-
tion 1.3.7, “Additional libraries” [9]. In addition, the client needs some information about how to
contact the server. See the description of the basic WorkflowServiceFactory (in Sec-
tion A.2.52, “Class WorkflowServiceFactory” [250]), the description of the WfMOpen specific fact-
ory implementation (in de.danet.an.workflow.ejbs.client.StandardWorkflowServiceFactory [325]) and
the remarks in Section 1.3.4, “Workflow module” [6] below.

1.3.3. The Danet AN utility library
All J2EE based software from the division AN uses a library with some common utility objects and
components. This library is supplied as de.danet.an.util.jar (again located in the
$DIST/lib/wfcore). Some components in this library (currently the logging service) need serv-
er side support. This support is provided by the corresponding EJB module described below.

Workflow APIs

5

3You should expect that only EJBs that are to be looked up by clients require binding to global JNDI names. It has turned out,
however, that some application servers require explicit specification of global JNDI names for all EJBs, and others (even
worse) choose default global JNDI names based on the EJB's names. Therefore, to avoid conflicts between different instances
of the workflow engine on one application server, global JNDI names must be supplied in any case.

The Danet AN utility library (package de.danet.an.util) is a general library used at our site.
This library is packaged as two JAR files. By default, classes are in de.danet.an.util.jar.
Some classes in the package (sub-package de.danet.an.util.jsf), however, are helper
classes for JSF based portlets. These classes are are not included in de.danet.an.util.jar.
They can be found in de.danet.an.util-jsf.jar. The reason for separating those classes is
that they may not be put in the common classpath of a J2EE application. In order to avoid classpath
problems, you have to put these JSF utility classes in the same directory as the JSF libraries (usually
the WEB-INF/lib directory of your web module). Note that the classes from
de.danet.an.util.jsf are only needed by the portlets that come with the workflow compon-
ent. The deployment of the workflow EJBs requires de.danet.an.util.jar only.

1.3.4. Workflow module
The central (server side) workflow component is an EJB-type J2EE module. This module is not self
contained, i.e. it relies on the presence of the workflow APIs, the Danet AN utility library and the
additional libraries listed below. The module is located in the distribution directory
$DIST/lib/wfcore as de.danet.an.wfcore-ejbs.jar.

The manifest file of de.danet.an.wfcore-ejbs.jar includes in its Class-Path:
statement the entries lib/de.danet.an.wfcore-apis.jar and lib/
de.danet.an.util.jar. Thus, the dependencies between the workflow module, the workflow
APIs and the Danet AN utility library will be resolved automatically if
de.danet.an.util.jar is put in the lib/ directory of the enterprise archive (the .ear-file).
An additional Class-Path: entry lib/de.danet.an.wfcore-plugins.jar serves as a
hook for adding jars with tool agents (see Section 3.5, “Tool invocation SPI” [30]) to the class path.
We recommend to put new tool agents or other libraries that are to be deployed with the engine core
in extra add-on jar files. Then create a jar de.danet.an.wfcore-plugins.jar with only a
META-INF/MANIFEST.MF that references your jars in its Class-Path: entry and add this
(along with your add-on jars) to the EAR as lib/de.danet.an.wfcore-plugins.jar. The
application server will then load de.danet.an.wfcore-plugins.jar (because it is refer-
enced in de.danet.an.wfcore-ejbs.jar) and subsequently your jars with additional com-
ponents.

1.3.4.1. Vendor specific deployment descriptors

The file de.danet.an.wfcore-ejbs.jar includes vendor specific deployment descriptors
for some application servers. These deployment descriptors define, among other things, the binding
of EJBs (EJB's home interfaces, to be precise) to global JNDI names3. As the workflow engine is in-
tended to be integrated in different applications that may run on one application server concurrently,
the JNDI names must be adapted to the specific application the engine is integrated with; else there
will be conflicts between the applications. All deployment descriptors therefore use "generic" names
for JNDI bindings such as "ejb/@@@_JNDI_Name_Prefix_@@@SomeEJB". When packing the
workflow engine EJBs, the prefix "@@@_JNDI_Name_Prefix_@@@" should be replaced with
some reasonable value (e.g. ""@@@_JNDI_Name_Prefix_@@@ = de.danet.wfdemo.").

Whereever the workflow module references the utility module (see Section 1.3.6, “The utility mod-
ule” [8]) in the included vendor specific deployment descriptors, it uses the same symbolic names
as the deployment descriptors of the utility module (again, see Section 1.3.6, “The utility module”
[?]). These symbolic names must be adapted as well when assembling an application.

Note that "generic" names and "symbolic" names for resources appear only in vendor specific de-
ployment descriptors. So supplying your own vendor specific deployment descriptors from scratch
is an alternative integration strategy.

The workflow module includes Ant helper scripts for executing the required adaptions. See Sec-
tion 1.4.1, “Preparing the modules” [9] for details.

Workflow module

6

4The other supported methods also have some benefits; it depends on your usage scenario.
5Thus you have three possibilities to provide the required priviledges:

1. In the user management system used by your application server, make all users of the workflow engine members of the
role "WfMOpenAdmin".

2. If your application server supports mapping between application roles and roles managed in your security domain (JBoss
does not support this, e.g. Sun AS does) you can map "WfMOpenAdmin" to an existing role in your security domain, thus
allowing all users in the existing role to access the workflow engine.

3. In all deployment descriptors, replace "WfMOpenAdmin" with the name of an exsting role in your user management sys-
tem. This is typically done during deployment but may also be done during application assembly.

1.3.4.2. Accessing the engine from a client

One global JNDI name is of specific importance. It is the name of the WorkflowEngineEJB.
This EJB is the only EJB looked up directly in JNDI by a workflow engine's client (remote inter-
faces of other EJBs are passed to the client directly or indirectly by methods of the WorkflowEn-
gineEJB). Therefore, the global JNDI name of the WorkflowEngineEJB's home interface must
be made known to the client. The lookup of this home interface need not be made explicitly. Rather,
it is encapsulated in the creation of a new workflow service by the WorkflowServiceFactory
(see newWorkflowService() [252]). Thus the configuration of the JNDI name becomes a configura-
tion issue of WfMOpen's implementation of the WorkflowServiceFactory. WfMOpen's im-
plementation class and its configuration is described in detail in
de.danet.an.workflow.ejbs.client.StandardWorkflowServiceFactory [325]. The preferred way to do the
configuration4 is to first create a file de.danet.an.workflow-wfs.properties with an
entry engine = ejb/@@@_JNDI_Name_Prefix_@@@WorkflowEngine (applying the re-
placement described above) and then to add this file to the client JAR
de.danet.an.wfcore-client.jar. This results in an "application specific" client library.
Anywhere this client JAR is used, the resource de.danet.an.workflow-wfs.properties
is found by the StandardWorkflowServiceFactory in the JAR and the proper workflow
engine EJB is looked up.

Another value that may need replacement is the security domain. The JBoss vendor specific deploy-
ment descriptor defines the security domain as java:/jaas/wfmopen. This should be replaced
by the application's domain.

1.3.4.3. Queues and Topics

In addition to the EJBs and the libraries, the workflow module requires three queues to be defined.
By default, the JNDI names of these queues are "queue/
@@@_JNDI_Name_Prefix_@@@ApplicationInvocations", "queue/
@@@_JNDI_Name_Prefix_@@@InternalEventQueue" and "topic/
@@@_JNDI_Name_Prefix_@@@EventService", with the latter being a topic queue. These
names are referenced in the vendor specific deployment descriptors of the EJBs and must be adapted
with the prefix replacement as described above.

You can find sample definitions of the required queues for JBoss in
$DIST/lib/wfcore/wfcore-destinations-service.xml. Depending on your applic-
ation server, you have to created these queues before the deployment of your application using e.g.
some console application. Alternatively, you may usually trigger the creation and configuration of
the queues by adding some vendor specific information to your enterprise archive (this mechanism
is used in the demo applications, see Appendix C, The demo applications [337]).

1.3.4.4. Security roles

The workflow module as distributed uses in its deployment descriptors a predefined security role
"WfMOpenAdmin" as only role and this role has all permissions5.

1.3.5. The optional callback module
The actual work during process execution is done by tool agents (see Section 3.5, “Tool invocation

The optional callback module

7

SPI” [30]). Several of these tool agents are included in WfMOpen (see Chapter 5,Tools [43]). Usu-
ally projects will add their own specific tool agents. In simple deployment scenarios, this can easily
be done by adding jars with tool agent implementations as described above in Section 1.3.4,
“Workflow module” [6].

In more complex deployment scenarios, there is a drawback to this approach. Consider an applica-
tion with a core EAR that contains, among other components, WfMOpen. Other EARs provide addi-
tional services. In order to invoke these services from the workflow engine with specific tool agents,
the agents would have to be bundled with the core EAR. But this would create a dependency on ser-
vices and classes in the additional EAR and thus effectively a circular dependency. It would also be
hard to have a consistent application server startup. If the engine is deployed first it may try to in-
voke a tool agent that requires services from an EAR that is not completely deployed yet.

In order to support such deployment scenarios, WfMOpen provides the callback module
de.danet.an.wfcore-callback-ejbs.jar that may be bundled with the additional ser-
vice EARs and executes tool agent invocations in the context of these service EARs. The callback
module bundles two EJBs that are also contained in the core workflow module: an EJB that reads
messages from the application invocation queue and an EJB (the InvocationHelperEJB) that
invokes the tool agents. Tool agent invocations are forwarded to callback EJBs by specifying a
Handler attribute for the application declaration in the process definition (see Section 4.2.5.1,
“Extentions of Application Declaration” [35]). Configuring the callback module is described in Sec-
tion 1.4.4, “Callback module deployment” [13].

1.3.6. The utility module
As described above, all J2EE based software from the division AN uses some common utility ob-
jects and components. While most of these elements can be simply supplied as a library, some com-
ponents (currently the logging support) consist of a client and a server part. The J2EE server side
elements are packaged in the distinct EJB-type J2EE module de.danet.an.util-ejbs.jar
that is also located in the $DIST/lib/wfcore distribution directory. This module must be de-
ployed along with the workflow module.

As the utility module is intended to be used in several applications, we have deliberately not defined
defaults for some information needed during deployment. Providing defaults for these values would
imply the risk that different applications inadvertently access each others utility EJBs. Instead of de-
faults we use symbolic names in the deployment descriptors that can reliably be replaced automatic-
ally.

All symbolic names are described below. The description should be sufficient to allow you to adapt
the deployment descriptors for your application. For more information about these EJBs, see the
maintenance manual.

The symbolic names used are:

@@@_Utility-EJBs_UtilEJB_JNDI_Name_@@@
The utility EJB's global JNDI name. This EJB has a global JNDI name defined because it may
be needed by stand-alone clients. A reasonable value if the utility module is used in a workflow
application would be de.danet.an.workflow.util-lib.Util.

@@@_Utility-EJBs_KeyGenEJB_JNDI_Name_@@@
The key generator EJB's global JNDI name. The key generator EJB has a global JNDI name
defined because it may be needed by stand-alone clients. A reasonable value if the utility mod-
ule is used in a workflow application would be
de.danet.an.workflow.util-lib.KeyGen.

@@@_Utility-EJBs_EJBSinkEJB_JNDI_Name_@@@
The log4j EJB-appender's global JNDI name. This EJB has a global JNDI name defined be-
cause it may be needed by stand-alone clients. A reasonable value if the utility module is used a
workflow application would be de.danet.an.workflow.util-lib.EJBSink.

As distributed, the utility module's descriptors do not specify any security constraints. We do,

The utility module

8

6The source distribution includes a stylesheet that, together with the appropriate invocations from ant scripts, adds security
information to deployment descriptors.
7If you use JBoss, you do not have to set the endorsed library directory, because JBoss comes updated libraries in its
$JBOSS_HOME/lib/endorsed directory. This directory is automatically set as endorsed directory in the JBoss run-
scripts.

however, strongly recommend adding such constraints as appropriate for an application's security
domain when assembling the application6. A common configuration is to introduce the same secur-
ity role as used for the workflow engine EJBs (i.e. "WfMOpenAdmin", see Section 1.3.4,
“Workflow module” [6]) and allow this role to execute all methods.

The module includes support for executing the required adaptions. See Section 1.4.1, “Preparing the
modules” [9] for details.

1.3.7. Additional libraries
As is usually the case with complex Java applications, the workflow component needs some third
party libraries in addition to the standard JDK. Those libraries are:

• The commons-logging library [http://jakarta.apache.org/commons/logging.html] from the Apache
Jakarta Project (for server).

• The log4j library [http://jakarta.apache.org/log4j] from the Apache Group (for client and server).

• The jdom library [http://www.jdom.org] (for server).

• The dom4j-full library [http://www.dom4j.org] (for server). This library also supplies the jaxen
libraries [http://www.jaxen.org].

• The jsr173 (a.k.a StAX) library [http://www.jcp.org/aboutJava/communityprocess/first/jsr173/]
(for server and client).

• The Rhino (JavaScript) library [http://www.mozilla.org/js/] (for server).

• The XMLBeans library [http://xmlbeans.apache.org/] (for server). This library is required by
Rhino for the E4X support.

• The jelly core, xml-tags and jsl-tags libraries [http://jakarta.apache.org/commons/jelly/] (for serv-
er).

• The BeanUtils library [http://jakarta.apache.org/commons/beanutils/] (for server, needed by jelly).

• The axis library [http://ws.apache.org/axis/] (for server).

When you want to use WfMOpen with JDK/JRE 1.4, updated versions of the JRE XML packages
(org.w3c.dom, org.xml.sax, org.xml.sax.ext and org.xml.sax.helpers) are
needed. You you must therefore use the Endorsed Standards Override Mechanism of the JDK [ht-
tp://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html] to provide those newer versions, i.e.
you have to set the system property java.endorsed.dirs to the directory
$DIST/lib/wfdemo/endorsed7. For the versions of the XML libraries currently used see the
CVS information in the tools/endorsed subdirectory.

1.4. Deploying the component
1.4.1. Preparing the modules

Additional libraries

9

http://jakarta.apache.org/commons/logging.html
http://jakarta.apache.org/commons/logging.html
http://jakarta.apache.org/log4j
http://jakarta.apache.org/log4j
http://www.jdom.org
http://www.jdom.org
http://www.dom4j.org
http://www.dom4j.org
http://www.jaxen.org
http://www.jaxen.org
http://www.jaxen.org
http://www.jcp.org/aboutJava/communityprocess/first/jsr173/
http://www.jcp.org/aboutJava/communityprocess/first/jsr173/
http://www.mozilla.org/js/
http://www.mozilla.org/js/
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/
http://jakarta.apache.org/commons/jelly/
http://jakarta.apache.org/commons/jelly/
http://jakarta.apache.org/commons/beanutils/
http://jakarta.apache.org/commons/beanutils/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html

As has been described in the previous sections, the deployment descriptors of the EJB modules must
be adapted to the application that integrates the workflow engine. In order to facilitate this task, the
EJB JARs have in their subdirectory assembly-resources ant scripts with targets that may be
called to perform the adaption. Of course, these scripts do not have to be used to adapt the EJBs,
they are simply provided as useful helpers.

1.4.1.1. General helpers

File assembly-resources/assembly-utils.xml provides general purpose targets that
can be used for any EJB JAR, not only for the workflow engine or utility EJBs.

add-ejb-resource-ref
Add a resource reference to an EJB. Must be called with properties "src-ejb-jar=<the ejb jar to
patch>", "target-ejb-jar=<the patch result>", "ejb-name=<the ejb that references the resource>",
"ref-name=<the locigal name used by the EJB to reference the resource>", "jndi-name=<the
(global) JNDI entry for the resource>", "res-auth" and "res-type" as to be put into the ejb-
jar.xml. This target needs additional resources (DTDs and stylesheets) that must be provided in
a directory specified with property "resource-dir=<directory>".

add-remote-ejb-resource-ref
Add a reference to a remote EJB. Must be called with properties "src-ejb-jar=<the ejb jar to
patch>", "target-ejb-jar=<the patch result>", "ejb-name=<the ejb that references the remote
ejb>", "ref-name=<the locigal name used by the EJB to reference the resource>", "ref-
type=<Session or Entity>", "home", "remote" and "link" as to be put into the ejb-jar.xml. This
target needs additional resources (DTDs and stylesheets) that must be provided in a directory
specified with property "resource-dir=<directory>".

add-local-ejb-resource-ref
Add a resource reference to a local EJB. Must be called with properties "src-ejb-jar=<the ejb jar
to patch>", "target-ejb-jar=<the patch result>", "ejb-name=<the ejb that references the re-
source>", "ref-name=<the locigal name used by the EJB to reference the resource>", "ref-
type=<Session or Entity>", "local-home", "local" and "link" as to be put into the ejb-jar.xml.
This target needs additional resources (DTDs and stylesheets) that must be provided in a direct-
ory specified with property "resource-dir=<directory>".

adapt-ejb-jar
Modify the deployment descriptors of an ejb jar by replacing given strings with other strings as
specified in a properties file. Must be called with properties "src-ejb-jar=<filename of distrib-
uted ejb jar>", "target-ejb-jar=<filename of adapted ejb jar>" and "props=<filename with prop-
erties>". If the special properties "security-roles", "security-identities" and "security-domain"
are defined, security information will additionally be inserted into the deployment descriptors as
specified by these properties. This target needs additional resources (DTDs and stylesheets) that
must be provided in a directory specified with property "resource-dir=<directory>". This target
also removes the sub-directory "assembly-resources" from the ejb jar if such a sub-directory ex-
ists. An additional properties file may be specified as property "token-replacements". The re-
placements specified in this file are applied to all deployment descriptors first. It is useful if you
want to process the same EJB twice, using one replacement from your main properties file in
the first step and another replacement in the second step, or to simply override replacements in
the main properties file.

add-ejb-env-entry
Add a resource reference to an EJB. Must be called with properties "src-ejb-jar=<the ejb jar to
patch>", "target-ejb-jar=<the patch result>", "ejb-name=<the ejb that requires the entry>", and
"env-entry-name=<name of environment entry>", "env-entry-type=<type of environment
entry>" and "env-entry-value=<value of environment entry>". The target needs additional re-
sources (DTDs, schemas and "assembly-utils.xml") which must be provided in a directory spe-
cified with property "resource-dir=<directory>".

adapt-war
Modify the deployment descriptors of a war by replacing given strings with other strings as spe-
cified in a properties file. Must be called with properties "src-war=<filename of distributed

Preparing the modules

10

war>", "dest-war=<filename of adapted war>" and "props=<filename with properties>". An op-
tional property "libs-to-remove" may be set to a comma separated list of files to remove from
WEB-INF/lib (because they will be supplied by the containing EAR).

add-env-entry-to-servlet
Modify the deployment descriptors of a war by adding an environment entry. Must be called
with properties "src-war=<filename of distributed war>", "dest-war=<filename of adapted
war>" and "env-entry-name=<name of environment entry>", "env-entry-type=<type of environ-
ment entry>" and "env-entry-value=<value of environment entry>". The target needs additional
resources (DTDs, schemas and "assembly-utils.xml") which must be provided in a directory
specified with property "resource-dir=<directory>".

1.4.1.2. Helpers for adapting the workflow engine EJBs

File assembly-resources/assembly-helpers.xml in the workflow engine EJB JAR
uses the general purposes targets described above and adds to them, thus providing specific targets
for the workflow engine EJBs.

adapt-wfmopen-modules
Modify the deployment descriptors of WfMOpen modules "de.danet.an.wfcore-ejbs.jar",
"de.danet.an.wfcore-callback-ejbs.jar", "de.danet.an.wfcore-client.jar" and
"de.danet.an.workflow.wfxml.war". Must be called with properties "src-dir=<directory with
distributed modules>", "target-dir=<directory for adapted modules>" and "props=<filename
with properties>". The target needs additional resources (DTDs, schemas and "assembly-
utils.xml") which must be provided in a directory specified with property "resource-
dir=<directory>". An optional property "libs-to-remove" may be set to a comma separated list
of files to remove from WEB-INF/lib of the WARs (because they will be supplied by the con-
taining EAR).

prepare-wfmopen-callback-module
Modify the deployment descriptors of WfMOpen module
"de.danet.an.wfcore-callback-ejbs.jar". Must be called with properties "src-dir=<directory with
distributed modules>", "target-ejb-jar=<name of adapted ejb-jar>" and "props=<properties
file>". These properties are the same properties as used for "adapt-wfmopen-modules". In addi-
tion, they must include a value for the key "@@@_JNDI_Callback_Name_Prefix_@@@"
used to derive the global JNDI name of the callback EJBs. These must, of course, be unique for
every deployment of the callback EJBs. (Note that you can use the property "token-re-
placements=<properties file> to simply "add" this property to the general WfMOpen properties
file, see general helper "adapt-ejb-jar".) Property "handler" specifies which tool agent invoca-
tions are handled by the adapted module, i.e. its value must correspond to the value used for the
"Handler" attribute of the application definition in the process definition. The target needs addi-
tional resources (DTDs, schemas and "assembly-utils.xml") which must be provided in a direct-
ory specified with property "resource-dir=<directory>".

adapt-client-jar
This target is called by "adapt-wfmopen-modules". It configures the StandardWorkflowEngine-
Factory by adding a file de.danet.an.workflow-wfs.properties with an appropriate entry to the
client jar. Must be called with properties "src-client-jar=<filename of distributed client jar>",
"target-client-jar=<filename of adapted client jar>" and "props=<filename with properties>".

make-deployment-service
Replace strings with other strings in a deployment descriptor as specified by a properties file
and wraps the result as a SAR. This target is provided because JBoss documentation does not
explicitly state that you can put arbitrary deployment descriptors (e.g. for creating a data
source) in an EAR. You can, however, wrap them in a SAR and put this SAR in the EAR (and
have it deployed by an entry in "jboss-app.xml". This target must be called with properties "de-
ployment-xml=<the deployment description>", "dest-file=<filename of the SAR>" and
"props=<filename with properties>".

1.4.1.3. Helpers for adapting the utility EJBs

Preparing the modules

11

File assembly-resources/assembly-helpers.xml in the utility EJB JAR uses the gen-
eral purposes targets described above and adds to them, thus providing specific targets for the utility
EJBs.

adapt-util-ejbs
Modify the deployment descriptors of utility ejbs by replacing given strings with other strings
as specified in a properties file and adding security information retrieved from the same proper-
ties file. Must be called with properties "src-ejb-jar=<filename of distributed ejb jar>", "target-
ejb-jar=<filename of adapted ejb jar>" and "props=<filename with properties>". The target
needs additional resources (DTDs, schemas and "assembly-utils.xml") which must be provided
in a directory specified with property "resource-dir=<directory>".

adapt-util-modules
Modify the deployment descriptors of the utility library modules. Must be called with properties
"src-dir=<directory with distributed modules>", "target-dir=<directory for adapted modules>"
and "props=<filename with properties>". The target needs additional resources (DTDs, schemas
and "assembly-utils.xml") which must be provided in a directory specified with property "re-
source-dir=<directory>".

1.4.1.4. Sample properties file

A sample properties file for use with the above ant scripts is shown below.

Information needed for
application assembly #

Adapt utility EJBs' JNDI names. They have no "reasonable" defaults,
so we have to specify very much. Note that these JNDI names are
define separately as the utility EJBs may be shared between
different applications. Note that "ejb/" will be prepended to the names
specified below automatically and the entries for local home interfaces
have "Local" appended to the name.
@@@_Utility-EJBs_UtilEJB_JNDI_Name_@@@ = \

de.danet.an.wfdemo.util-lib.Util
@@@_Utility-EJBs_KeyGenEJB_JNDI_Name_@@@ = \

de.danet.an.wfdemo.util-lib.KeyGen
@@@_Utility-EJBs_KeyGenLockEJB_JNDI_Name_@@@ = \

de.danet.an.wfdemo.util-lib.KeyGenLock
@@@_Utility-EJBs_EJBSinkEJB_JNDI_Name_@@@ = \

de.danet.an.wfdemo.util-lib.EJBSink
Adapt utility EJB's data source reference
java\:/DefaultDS = java:/WfMOpenDS

Adapt other EJBs' JNDI names. Most application servers require that
you specify JNDI names although all references to the EJB are via
links within the application. We simply define a prefix for those.
This prefix is also used for JNDI names of other resources. Note that
"ejb/" will be prepended to the prefix specified below when used to
derive JNDI names for EJBs.
@@@_JNDI_Name_Prefix_@@@ = de.danet.an.wfdemo.

util-ejbs-security-domain = java:/jaas/wfdemo
util-ejbs-security-roles = \
WfMOpenAdmin: \
KeyGen*KeyGenLock*EJBSink*Util;

util-ejbs-security-identities = TimeoutHandler:WfMOpenAdmin
util-ejbs-security-principals = TimeoutHandler:WfMOpenAdmin_Principal

Adapt workflow engine (note that the engine uses the util EJBs,
necessary replacements are already covered by the properties above).
java\:/jaas/wfmopen = java:/jaas/wfdemo

Basic deployment

12

1.4.2. Basic deployment
The workflow EJBs can be deployed in the usual way defined by J2EE:

<application>
<display-name>My application using WfMOpen</display-name>
<module>
<ejb>de.danet.an.util-ejbs.jar</ejb>

</module>
<module>
<ejb>de.danet.an.wfcore-ejbs.jar</ejb>

</module>

<module>
<ejb>some.user.my.application.jar</ejb>

</module>
</application>

Make sure that you have included all libraries needed by the workflow EJBs in the lib/ directory
of your J2EE application as described in Section 1.3.4, “Workflow module” [6]. This is a usable
configuration if you only define workflow processes without any resources (i.e. only automatically
executed activities). If resource assignment to activities is needed, some additional services have to
be supplied as described below.

If you combine the workflow engine EJBs and servlets (packed as WARs) in a single EAR, it is ad-
visable to have libraries used by both components only in the EAR (i.e. not in the WARs' WEB-
INF/lib directory. In such a configuration, the libraries must explicitly be deployed as Java mod-
ules in application.xml. Note that this and other packaging aspects are not WfMOpen specif-
ic. Rather they apply to J2EE applications in general and details are bexond the scope of this manu-
al. See one of the many books about J2EE for further informations.

1.4.3. Additional services
An issue not necessarily handled by a workflow core service is the issue of resource assignment.
The OMG specification explicitly leaves this topic to a to-be-defined resource assignment facility.
We have therefore chosen to introduce a simple interface to a resource assignment service in our
design. This interface is described in detail in the package
de.danet.an.workflow.spis.ras [../../spis/ras/package-summary.html].

In order to keep this interface easily implementable by any kind of architecture, access to this ser-
vice is not based on JNDI and an EJB home interface. Access rather follows the established generic
pattern to create a service using a factory class. In order to use the workflow component, an imple-
mentation of this service must be provided.

The workflow component includes a sample implementation of a resource assignment service. If
you want to use this implementation, some additional configuration issues arise which are discussed
in Section 6.1, “The sample assignment service” [65].

1.4.4. Callback module deployment
The callback module should be adapted by using the target "prepare-wfmopen-callback-module" as
described in Section 1.4.1.2, “Helpers for adapting the workflow engine EJBs” [11]. This requires
basically the same properties as adapting the core modules, i.e. a basic knowledge about the work-
flow engine configuration. In order to distinguish the callback EJBs from the ones used in the en-
gine core and in other callback module configurations, each deployment must specify an individual
additional property @@@_JNDI_Callback_Name_Prefix_@@@. This is used to derive the
global JNDI name of the callback EJBs. To avoid a complete properties file for every callback mod-
ule adaption, this property may be put in its own properties file. This properties file is then passed to
the invocation of the ant target as property token-replacements. "Token-replacements" is a
mechanism supported by the ant helpers that allows to override (and therefore also add) individual
properties in the general properties file.

Additional services

13

../../spis/ras/package-summary.html
../../spis/ras/package-summary.html

Also required is the specification which tool agent invocations are to be handled by the callback
module. This is determined by the ant property handler. Its value must correspond with the value
of the attribute Handler used for the application declaration in the process definition (see Sec-
tion 4.2.5, “Defined extensions” [35]).

Callback module deployment

14

Chapter 2. States and state
transitions of processes and
activities
Dr. Christian Weidauer, Danet GmbH
Dr. Michael Lipp, Danet GmbH

2.1. States of processes and activities
Both WfProcess and WfActivity objects can assume the same six different states. The follow-
ing table itemizes these states and explains their meaning for processes and activities.

Table 2.1. Meaning of execution object states

state \ object process activity

open.not_run
ning.not_sta
rted

After creation the process is active and
ready to be initialized and started.

After creation the activity is active and
ready to be initialized and started when
its start condition is fulfilled.

open.running The process is active and executing in
the workflow. The process may start
new activities.

The activity is executing in the work-
flow. The activity is invoking the im-
plementing tools or a sub process was
started and is running.

open.not_run
ning.suspend
ed

The process is active and quiescent,
but ready to execute. Its execution is
temporarily paused, so that no further
activities depending on this process
may be started.

The execution of the activity is tem-
porarily paused. If the activity is im-
plemented as a sub process the process
is also suspended.

closed.abort
ed

Indicates that the enactment of the pro-
cess has been aborted before normal
completion. The only assumption on
the state of activities depending on this
process is that no activity is running.
Note, however, that tools may still be
running if they do not support asyn-
chronous termination.

Indicates that the enactment of the
activity has been aborted before nor-
mal completion. No assumptions on
the state of sub processes and tools de-
pending on this activity are made when
it enters this state.

closed.termi
nated

Indicates that enactment of the process
was stopped before normal comple-
tion. It is assumed that all activities de-
pending on this process have never
been started or are completed or are
terminated when it enters this state.

Indicates that enactment of the activity
was stopped before normal comple-
tion. It is assumed that all sub pro-
cesses and tools depending on this
activity are either completed or are ter-
minated when it enters this state.

closed.compl
eted

When a process has finished its task
normally in the overall workflow pro-
cess it enters the completed state. It is
assumed that all activities associated
with the process are completed or not
started when it enters this state. Fur-
ther, the combination of the conditions
on the incoming transitions of activit-
ies that are not started must evaluate to
false.

When an activity has finished its task
normally it enters the completed state.
It is assumed that all tools or sub pro-
cesses associated with the activity are
completed when it enters this state.

15

2.2. State transitions of processes and activ-
ities

During the life cycle of processes and activities their states change. The following figure shows sup-
ported state transitions of WfProcess and WfActivity objects.

Figure 2.1. State transitions of execution objects

As can be seen in the figure, both the WfProcess and WfActivity objects start in state
open.not_running.not_started when they are created and finish in one of three different
closed states.

2.3. Triggers of state transitions
State transitions are triggered by the client API and the engine or can be an reaction to exceptions
occuring when invoking tools.

The following table shows how calling a client API operation changes the state of an execution ob-
ject (process or activity). The numbers used in the following tables refer to the state transitions in
the above state diagram.

Note that triggering a state change will cause the workflow engine to either make the intended trans-
ition or to throw one of the exceptions declared in the API (see Section A.1.36, “Interface WfExecu-
tionObject” [111], Section A.1.42, “Interface WfProcess” [132] and Section A.1.29, “Interface
WfActivity” [98]). As a result of the transition made, however, the object's state may further be up-
dated by the engine or other clients running in different threads. Thus querying the state of an execu-
tion object immediately after successfully triggering a state change may return a state different from
the target state of the transition in the table.

Triggers of state transitions

16

Table 2.2. State transitions triggered by client API calls

object \ method start suspend resume terminate abort complete

WfProcess 1 4 3 2, 7 5 n. a.

WfActivity n. a. 4 3 2, 7 5 8, 9

The "unobservable" (from the client's point of view) state transitions caused by a call to complete
may seem strange at first. See the method's API documentation (complete() [99]) for further inform-
ation about the behaviour.

Usually, state transitions of an execution object will cause further state transitions of other execution
objects. There are six cases to distinguish, which are shown in the following table. The head row of
the table defines the state transition of the triggering object. This transition may influence the
triggered object (triggering object -> triggered object). Its potential transitions are listed in the table
elements. E. g. table element (1(a)) in the second table row (WfProcess (parent) -> WfActivity)
and fifth column (3) means: The state transition 3 of a parent process may cause a state transition 1
of its activities if the start condition of the activities is fulfilled.

Special attention has to be paid to state transitions of activities with manual start and/or finish mode.
These modes are implemented by setting the activity object to state
open.not_running.suspended instead of state open.running (manual start mode) or
state closed.completed (manual finish mode). When resuming an activity object (transition 3)
the engine will therefore take into account why the activity was suspended and proceed accordingly.

Table 2.3. State transitions triggered by the engine

object \ transition 0 1 2 3 4 5 6 7 8 9

WfProcess (parent)
-> WfActivity

0 1(a) 1(a) 5, 7,
4(j)

n. a. 7 n. a. n. a.

WfProcess (sub) ->
WfActivity

n. a. n. a. n. a. 5 8 7 n. a. n. a.

WfActivity -> Wf-
Process (parent)

n. a. n. a. 4 6(d),
7(e)

7(c)

WfActivity -> Wf-
Process (sub)

0 &
1(k)

n. a. 3 4 5 n. a. 7 n. a.

WfProcess -> Wf-
Process (itself)

5(b) n. a. n. a.

WfActivity ->
WfActivity (itself)

4(f) 4(g),
6(h)

5(b) 4(g),
6(i)

(a) If the start conditions of the activity evaluate to true.

(b) If the triggering transition 4 (to open.not_running.suspended) was caused by an
activity state transition 5 (to closed.aborted). Occurs if an activity aborts (causing
everything else to abort) and the process (or an activity of the process) is in state
open.running. Then closed.aborted can only be reached via an intermediate
open.not_running.suspended.

(c) If there are no more running activities or activities with start conditions evaluating to true.

(d) If there are no more running activities and no activities with start conditions evaluating to
true and all closed activities have state closed.completed.

(e) If there are no more running activities and no activities with start conditions evaluating to

Triggers of state transitions

17

1The impact on transitions is quite different, of course.
2We could have relaxed this dependency, allowing the process to reach the completed state even if an activity is terminated or
aborted, provided this state was reached due to an exception. But then the state definition wouldn't be OMG compliant any
more.

true and one or more closed activities have a state other than closed.completed.

(f) If start mode is manual.

(g) If the activity's finish mode is manual and no work remains to be done.

(h) If activity was suspended because finish mode is manual.

(i) If the activity's finish mode is automatic and no work remains to be done.

(j) If the activity cannot be terminated.

(k) If the start mode of the activity is manual, creation and start of the sub-process will be
delayed until the activity has been resumed.

Besides the triggering by the client or the engine, there are three more possible causes for state
transitions:

• A failure to invoke a tool causes state transition 7 of the invoking WfActivity object.

• The detection of a loop causes the activities on the path to be reset, i.e. their state changes intern-
ally from closed... to open.not_running.not_started (see Section 4.3.4, “Loops”
[?] for details about loops). This change of state is not recorded as an audit event, because the re-
peated execution of an activity is interpreted as several instances of the activity being executed
one after the other. Thus the first activity instance is started, runs and completes, then the second
activity instance is started, runs and completes. There is no observable change from closed...
to open.not_running.not_started.

• If the preliminary choice of an activity in a deferred choice is revoked (because another activity is
chosen), its state changes from open.running to open.not_running.not_started
(see Section 4.3.5, “Deferred choice” [42] for details about the deferred choice). This change of
state is recorded as an audit event, as it is part of the activity's execution sequence.

2.4. Exceptions
Besides events triggered by a client, an activity may also receive exceptions. Exceptions are defined
in the XPDL specification as a general mechanism to signal an exceptional condition to an activity.
The only specifically defined exceptions are those generated by the arrival of a deadline that has
been defined for an activity. WfMOpen additionally supports handling exceptions from tool invoca-
tions, see Section 3.5.4, “Exception handling” [31] for details.

As far as state is concerned, exceptions are basically handled like the final complete call1. Any run-
ning tool is terminated and tools not yet invoked are skipped.

It may at first be surprising that the activity reaches closed.completed when an exception oc-
curs. However, any other resulting state of an activity would have a strange effect on the final pro-
cess state, as it would prohibit the process from reaching the completed state (see Section 2.1,
“States of processes and activities” [15])2. From a process' point of view everything is all right. A
deadline may have occurred and some special transitions may have been taken, but the process has
still performed within its specification.

Things look a bit different, though, from the perspective of a subprocess started by an activity that
receives an exception. This process is forcefully terminated by its requester (the activity that has re-
ceived the exception). It therefore assumes the state terminated or aborted. In contrary to the normal
state transitions, this does not cause the requesting activity to assume the same state as the activity is

Exceptions

18

3There has been some disussion if this is the proper behaviour. The reasoning is that setting the activity in the suspend state is
nothing that occurs during normal workflow execution. It is a deliberate management action. This action would become far-
cial if it could be circumvented by a deadline.
4We assume that a process designer who defines start or finish mode manual together with a deadline wants that deadline to
be executed to e.g. notify the administrator.

set to state completed by the exception processing.

Under normal circumstances, the occurrence of an exception should be derived from the transitions
taken in a process. However, as a help for automated evaluations, WfMOpen has introduced the sub-
states closed.completed.normal and closed.completed.abandoned with the latter
being assigned to an activity that has been completed due to an exception.

2.5. Suspended state and deadlines
XPDL introduces deadlines, OMG knows about a "suspended" state, but neither knows about the
other. This leaves the question of how the suspended state affects deadlines. We have defined the se-
mantics as follows.

If an activity is set to state suspended, deadlines are suspended as well, i.e. no exceptions from dead-
lines will occur3. Note that "if an activity is set to state suspended" is not the same as "if an activity
is in state suspended". Activities may also reach the state suspended if they have manual start or fin-
ish mode. In these cases deadlines are not suspended4.

If the deadline has been defined as an absolute date time value (see Section 4.2.4, “Deadlines” [34]
then setting an activity in the suspended state will not prolong the deadline. If the deadline is
reached while the activity is suspended, the related exception will be delivered immediately when
the activity is resumed.

If the deadline has been defined as a duration then setting an activity in the suspended state will pro-
long the deadline, i.e. the deadline will be delayed by the accumulated time that the activity has
spent in the suspended state.

Dynamic deadline conditions, i.e. conditions that depend on process relevant data, will be re-
evaluated every time the activity is resumed. The advantage of this behavior is that it effectively of-
fers you a choice. If you want your expiration date to remain, you simply use only process relevant
data that does not change. The disadvantage is that in order to have invariant process relevant data,
you may have to make copies of several items (or, maybe better, calculate your deadline in an inde-
pendent expression and keep it in some data field).

Maybe the biggest trap in re-evaluation is that the simple conversion of a duration to an absolute
date "new Date((new Date()).getTime() + duration)" will not work. While this
yields a date, which is not prolonged by the suspend state, it will be re-evaluated when the activity is
resumed. Thus the deadline will probably be delayed even more than by using the duration in the
first place. There is no solution to this other than saving the start time of the activity in a data item
(e.g. by calling the JavaScript tool as first tool of the activity).

2.6. Debugging workflows
Workflows may be run in debugging mode. In this mode, the activities assume some additional, in-
termediate states. Note that the associated state transitions are neither recorded nor distributed as
state change events. The debug mode has been designed to run the workflow in a way that resembles
the normal execution as closely as possible. The debug mode is not a simulation. It can best be com-
pared to running a program in a debugger, i.e. the workflow is really executed. There are, however,
predefined break points and the invocation of tools may be simulated instead of actually performed.

Suspended state and deadlines

19

2.6.1. Enabling debug mode
Debugging mode is enabled for a specific process by calling setDebugEnabled(true) on the
process after creating, but before starting the process (see setDebugEnabled(boolean) [209]).

Debugging can also be enabled for a process type by default using the XPDL extension mechanism
as described in Section 4.2.5.2, “Extensions on Package and Process Level” [36].

2.6.2. Effect on state changes
When debug mode is enabled, the execution of activities breaks before the invocation of a tool and
before completion of an activity.

Immediately before invoking a tool, the activity's state changes to
open.running.debug.invoking. To continue the execution, the activity's state must be
changed to either open.running or to open.running.debug.skipping. In the former
case, the tool will be invoked as in non-debugging mode. In the latter case, tool invocation will be
skipped and the activity will either assume the state open.running.debug.invoking again
(if there are more tools to be executed by the activity) or the state
open.running.debug.completing (if the invocation of the last tools has been skipped, see
below). Of course, the process data must subsequently be modified manually to reflect the changes
that would have been made by the tool invocation.

Before the activity is eventually closed, it enters one of the states
open.running.debug.terminating, ...aborting or ...completing depending on
the closed-state that the activity will assume. To continue execution and cause the activity to assume
it proper closed state, the activity's state must be changed to open.running.

2.6.3. Effect on exceptions
In debugging mode, exceptions thrown by tools (i.e. calls to abandon, see aban-
don(java.lang.String) [146] will cause the activity to assume the state
open.running.debug.abandoning. To continue the execution, it is not sufficient to provide
the possibility to change the state to open.running as described above for the "normal" trans-
itions to the closed state. There may be several exceptional transitions defined, and it must be pos-
sible to specify which exception should be used, else it wouldn't be possible to test the different
paths during debugging.

In order to avoid polluting the interface with methods that are only used for debugging, we have
defined a special sequence of method invocations that cause the execution to continue (i.e. the state
will change to closed.completed.abandoned and the execution of subsequent activities will
be triggered as specified by the transitions). You first change the state to
open.running.debug.awaiting_exception and then call abandon (see aban-
don(java.lang.String) [146]) with the name of the exception to be processed. The preceding state
change causes abandon(String) to behave differently from normal operation, effectively con-
tinuing execution as described above.

In order to avoid any ambiguities, we strongly recommend to execute the two operations (state
change and abandoning) in a single transaction. This may be achieved by using a user transaction as
described in the J2EE specification or by using the method invocation batch (see Section A.2.31,
“Class MethodInvocationBatch” [193]).

WorkflowService wfs = ...;
MethodInvocationBatch mib = new MethodInvocationBatch(true);
mib.addInvocation (activity, "changeState",

new String[] {"java.lang.String"},
new Object[] {"open.running.debug.awaiting_exception"});

mib.addInvocation (activity, "abandon",
new String[] {"java.lang.String"},
new Object[] {exception});

MethodInvocationBatch.Result mir
= (MethodInvocationBatch.Result)wfs.executeBatch(mib);

Effect on state changes

20

2.6.4. Effect on deadlines
Deadlines will be be started in debugging mode just as in non-debugging mode. However, nothing
happens when deadlines are reached. The state of deadlines may be monitored by calling deadlines()
[148]. To cause the process to proceed as if a synchronous deadline had been reached, you must first
call abandon(String), which causes the activity to assume the state
open.running.debug.abandoning, and then continue execution as described for exceptions
in general above (see Section 2.6.3, “Effect on exceptions” [20]). This may, of course, be done be-
fore the deadline has been reached, i.e. the effect of a deadline may be tested without actually wait-
ing for the associated time (which may be quite long) to elapse.

In order to simulate an asynchronous deadline, the state of an activity must first be changed to
open.running.debug.forwarding_exception. This causes a subsequent call to aban-
don to mimic the behavior of an asynchronous deadline, i.e. transitions will be triggered as spe-
cified for the given exception. The activity will automatically resume the state that it had before the
change to open.running.debug.forwarding_exception. Of course, this sequence of
method calls should also be executed in a single transaction, as described above.

Effect on deadlines

21

22

Chapter 3. Using the workflow
component
3.1. Component structure

The following figure shows the overall structure of Danet's workflow component.

Figure 3.1. Structure of the workflow component

As can be seen in the figure, the workflow core component provides an EJB based client API. Help-
er classes on the client side hide most of the EJB invocation details, thus enabling the usage of the
component without constantly keeping EJB details in mind.

The workflow component relies on the availability of a resource assignment service. As this service
must be provided to the workflow component, it can be thought of as an additional API, or SPI to be
precise, of the workflow component.

The distribution includes a sample implementation of such a resource assignment service which is

23

described in detail in Chapter 6, The sample resource assignment service [65].

Finally the workflow package defines an API (SPI) used to invoke applications that perform activit-
ies.

The following sections describe each API in detail.

3.2. Client API
A standard workflow Java API has not been defined yet. Still, we did not want to provide users of
our workflow component with a completely proprietary API. Therefore, we have taken a two stage
approach.

3.2.1. Adapted OMG interfaces
As a first step, we have adapted the API specified by OMG's Workflow Management Facility Spe-
cification, V1.2 to the Java domain. The result of this adaptation can be found in the package de-
scription of de.danet.an.workflow.omgcore (see de.danet.an.workflow.omgcore [81] or
JavaDoc [../../omgcore/package-summary.html#package_description]). The package defines the core
workflow classes such as WfProcess, WfActivity etc. A detailed description of the process
used to derive the Java interfaces from the OMG specification can be found in the package descrip-
tion.

The OMG core workflow interfaces define a workflow model as shown in the following diagram.

Client API

24

../../omgcore/package-summary.html#package_description
../../omgcore/package-summary.html#package_description

Figure 3.2. OMG core workflow model

The central classes of the model are WfProcess (see Section A.1.42, “Interface WfProcess” [132])
and its constituting WfActivity instances (see Section A.1.29, “Interface WfActivity” [98]). Pro-
cesses of the same type can be created and accessed with their WfProcessMgr (see Sec-

Adapted OMG interfaces

25

tion A.1.43, “Interface WfProcessMgr” [135]).

3.2.2. Extending the core interface
Examining the OMG interface closely, we found that it lacks some functions that we would like to
offer. For some OMG interfaces we have in a second step therefore defined a corresponding inter-
face that extends the OMG base interface.

We have also added some interfaces for areas that the OMG specification has purposely omitted
from its scope (e.g. access to process definitions).

The starting point for using the workflow engine is the WorkflowServiceFactory. Use this
class to create a new WorkflowService (see Section A.2.52, “Class WorkflowServiceFactory”
[250], especially setProperty(java.lang.String, java.lang.Object) [253], and Section A.2.51, “Interface
WorkflowService” [240]). The workflow service provides the methods to access the process defini-
tions, processes etc.

Note that the extended API has been defined completely independent of J2EE. It is possible to im-
plement this API with POJOs, though it may turn out to be difficult to provide remote access, reli-
able transactional behavior, security and scalability without using J2EE.

The implementation of the API provided by WfMOpen is J2EE based because we found this mid-
dleware an ideal basis for a workflow engine that can meet the demands of enterprises. The work-
flow service factory implementation provided by WfMOpen is described in
de.danet.an.workflow.ejbs.client.StandardWorkflowServiceFactory [325]. See this description for
more information about required configuration parameters.

3.3. Sample client
Holger Schlüter, Danet GmbH

This section covers a step-by-step description of the process of building a basic sample client.

The example helps you to learn how to set up your compilation and runtime environment and fi-
nally, you will be able to retrieve some information from the workflow engine.

3.3.1. Client code
Let's start with a first look at the code we need for this purpose:

package samples;

import java.util.Iterator;
import java.rmi.RemoteException;

import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import de.danet.an.workflow.api.WorkflowServiceFactory;
// Section A.2.52, “Class WorkflowServiceFactory” [250]

import de.danet.an.workflow.api.WorkflowService;
// Section A.2.51, “Interface WorkflowService” [240]

import de.danet.an.workflow.api.ProcessDirectory;
// Section A.2.44, “Interface ProcessDirectory” [230]

import de.danet.an.workflow.omgcore.WfProcess;
// Section A.1.42, “Interface WfProcess” [132]

import ProjectLoginContext; // Section 3.3.2, “Gaining access” [28]

/**
* A sample workflow client.
*/
public class TestClient {

private static LoginContext lctx = null;

Extending the core interface

26

/**
* Main method called when started from shell.
* @param args arguments
*/
public static void main(String args[]) {

System.out.println("Started");

// This block authenticates a user. It is needed only once
// within a client program (see Section 3.3.2, “Gaining access” [28]).
try { // ❶

lctx = new ProjectLoginContext();
lctx.login();

} catch (LoginException exc) {
System.err.println("Login failed: " + exc.getMessage());
System.exit(-1);

}

// Here starts the real work.
WorkflowService wfs // ❷

= WorkflowServiceFactory.newInstance().newWorkflowService();
try {

ProcessDirectory dir = wfs.processDirectory(); // ❸
Iterator procs = dir.processes().iterator(); // ❹
while (procs.hasNext()) {

System.out.println
("Proc: " + ((WfProcess)procs.next()).name()); // ❺

}
} catch(RemoteException exc) {

System.err.println
("Process directory not accessible: " + exc.getMessage());

System.exit(-1);
}

}
}

❶ The purpose of this block will be explained below (see Section 3.3.2, “Gaining access” [28]). It
has nothing to do with the genuine workflow engine functionality.

❷ The first step in using the workflow service is to obtain a reference to a WorkflowService
(see Section A.2.51, “Interface WorkflowService” [240]). Such a reference is obtained from the
factory class WorkflowServiceFactory (see Section A.2.52, “Class WorkflowService-
Factory” [250]).

❸ From the workflow service we can get the ProcessDefinitionDirectory (see Sec-
tion A.2.43, “Interface ProcessDefinitionDirectory” [225]) or theProcessDirectory (see
Section A.2.44, “Interface ProcessDirectory” [230]). As we want to list the workflow processes
in our sample clients, we get the ProcessDirectory.

❹ We call processes (see processes() [232]) to obtain the collection of known processes and it-
erate over them.

❺ For this example we simply output the names of the processes (see name() [115]). Of course,
you may add print statements for additional attributes.

3.3.2. Running the sample client
Preparations

First of all, you have to install the database (see Section 1.2, “Preparing the database” [2]) and de-
ploy the workflow ejbs (see Section 1.4, “Deploying the component” [9]).

If you have installed a demo application (see Appendix C, The demo applications [337]) you can use
it as the server for the sample client.

Building environment

Next, add the following libraries to your compilation classpath:

Running the sample client

27

1If you use the demo application described in Appendix C, The demo applications [337] you can extract an adapted client lib-
rary from the EAR. Go to the directory $JBOSS_HOME/server/wfdemo/deploy and extract the file
de.danet.an.wfcore-client.jar from the lib subdirectory in the demo EAR.

• Danet's wfcore API library (de.danet.an.wfcore-apis.jar)

• Danet's AN utility library (de.danet.an.util.jar)

• All libraries needed by your J2EE client environment

• All libraries needed by your EJB client environment

• All third party libraries referenced in Section 1.3.7, “Additional libraries” [9]

You should now be able to compile the sample client code.

Running the client

After the successful compilation of your client, you need to add the following items to your runtime
classpath:

• All libraries from the compilation classpath.

• Danet's wfcore client library (de.danet.an.wfcore-client.jar), adapted to your server
configuration as described in Section 1.3.4, “Workflow module” [6]1

• The directory with the preferred Log4J configuration for your client (in a file named
log4j-appl.xml).

• The log4j library.

If you now try to start the sample client, you will get an error message, stating that the environment
is unable to locate a login configuration. This is due to the fact that every access to an EJB is secur-
ity controlled by the application container.

Gaining access

Access to EJBs may be secured by specifying roles that have access to methods. In the sample ap-
plication, a single security role named WfMOpenAdmin has been configured, which a user has to
adopt in order to gain full access to all application components (see the ejb-jar.xml in the
de.danet.an.wfcore-ejbs.jar).

Since the J2EE specification does not define how to associate roles with a client, things get a bit
vendor-specific here. Lookup your J2EE server's documentation to find out how things are handled
in your environment. A popular method used by several J2EE vendors is to use JAAS based authen-
tication. We'll explain the mechanism using the JBoss application server as an example.

Roughly, JAAS is based on a session related LoginContext that holds security information
(including associated roles) about a Principal (typically a user's login name). One or more con-
figurable "login modules" provide this information. The login modules are invoked when Login-
Context.login() is called (see ❶ [27]). The login modules may use a callback to query cre-
dentials. If proper credentials are supplied, the login module adds information (such as roles) to the
LoginContext.

If you have no predefined callback implementations available, you may use this example:

import java.io.IOException;

import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.TextOutputCallback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;

Running the sample client

28

import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;

/**
* Simple login context for unit tests.
*/
public class ProjectLoginContext extends LoginContext {

public final static String USERNAME = "junit";

private static class CBH implements CallbackHandler {
public void handle (Callback[] callbacks) ❶

throws UnsupportedCallbackException, IOException {
for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof TextOutputCallback) { ❷
// display the message according to the specified type
TextOutputCallback toc = (TextOutputCallback)callbacks[i];
switch (toc.getMessageType()) {
case TextOutputCallback.INFORMATION:

System.err.println(toc.getMessage());
break;

case TextOutputCallback.ERROR:
System.err.println("ERROR: " + toc.getMessage());
break;

case TextOutputCallback.WARNING:
System.err.println("WARNING: " + toc.getMessage());
break;

default:
throw new IOException("Unsupported message type: " +

toc.getMessageType());
}

} else if (callbacks[i] instanceof NameCallback) { ❸
// prompt the user for a username
NameCallback nc = (NameCallback)callbacks[i];
nc.setName(USERNAME);

} else if (callbacks[i] instanceof PasswordCallback) { ❹
// prompt the user for sensitive information
PasswordCallback pc = (PasswordCallback)callbacks[i];
pc.setPassword(USERNAME.toCharArray());

} else {
throw new UnsupportedCallbackException

(callbacks[i], "Unrecognized Callback");
}

}
}

}

public ProjectLoginContext () throws LoginException {
super ("danetworkflow", new CBH()); ❺

}
}

❶ At the first glance, things look much more complicated than they are. All we really have to do
is implement the call back handler. It has a single method handle that has an array of call-
backs to be handles as parameter.

❷ A TextOutputCallback is send by the login module if it want some text to be shown to
the user (like "Invalid user name"). The messages are simply passed to the appropriate output
channel.

❸ This callback is sent if the login module wants a user name. We used a fixed name here and
simply set this as the callback result.

❹ This callback is sent if the login module wants a user credential (which need not be a string,
hence it is typed as byte array). We used a fixed password (the name) here and simply set this
(converted to a byte array) as the callback result.

❺ All we have to do in order to customize the standard LoginContext is to pass out callback
handler and a security configuration name (see below) to the constructor.

Running the sample client

29

The security configuration name used by the LoginContext must match an entry in the file that
declares all security domains for JAAS. For our client (and JBoss) we need an entry like this:

danetworkflow {
org.jboss.security.ClientLoginModule required;

};

This declares that a single login module org.jboss.security.ClientLoginModule
should be called.

Finally we must tell JAAS that it should use our configuration file by starting the java virtual ma-
chine with this additional parameter: -
Djava.security.auth.login.config=auth.conf.

The login context in our example provides credentials for the user “junit”. So we have to make sure,
that the user “junit” is able to adopt the role StaffManagementRole_0. The described JBoss
security configuration verifies given credentials on the basis of the Jetspeed2 user management
component. Thus, to gain the proper access rights, make sure that a user name “junit” is defined
within the Jetspeed2 portal and that this user is part of the administrator group (the group with the id
“0”).

With these security settings, the client should now display a list with all processes currently running
(or closed but not deleted) in the workflow engine.

3.4. Resource assignment SPI
The resource assignment SPI is described in detail in section de.danet.an.workflow.spis.ras [269]. It
makes the resource assignment service a pluggable component, i.e. you are free to choose an assign-
ment service that suits the needs of your business processes and your organization.

The sample resource assignment service included in the WfMOpen distribution (see Chapter 6, The
sample resource assignment service [65]) simply supports the selection of specific humans, groups
or resources. You may replace this with a component that takes in consideration skills, shift times
etc.

A resource assignment service must implement a resource assignment factory and a resource assign-
ment service as defined in Section A.4.6, “Class ResourceAssignmentServiceFactory” [279] and Sec-
tion A.4.5, “Interface ResourceAssignmentService” [271]. An implementation ofResourceAs-
signmentFactory may require additional configuration properties to adapt the service instances
that it creates to the specific environment. Usually, these properties are retrieved from JNDI envir-
onment entries or from a Java properties file (see Chapter 6, The sample resource assignment ser-
vice [65] for an example).

The WfMOpen implementation guarantees that the resource assignment service factory is only used
in the context of the WorkflowEngineEJB. Therefore, if you use JNDI environment entries to
configure your factory, it is sufficient to add those entries to the WorkflowEngineEJB. Note that
the guarantee to use the resource assignment service factory in this context only is implementation
specific. Therefore the general SPI description leaves the issue of which EJBs require the entries de-
liberately open.

3.5. Tool invocation SPI
The tool invocation SPI provides the possibility to add "tool-plugins" to the workflow engine. Im-
plementing tools is quite easy. The only interface that a class must implement in order to be usable
as a tool is ToolAgent (see Section A.3.10, “Interface ToolAgent” [263]).

The tools that are bundled in the WfMOpen distribution are described in Chapter 5, Tools [43]. Their
sources should should be consulted as examples for tool agent implementation.

3.5.1. Invocation mode

Resource assignment SPI

30

2The methods made available in ToolAgentContext are based on the experience gained in implementing tools. If you
feel that additional methods should be provided, please let us know.

As explained in the package description of the application invocation interface (see
de.danet.an.workflow.spis.aii [254]), tool agent invocations are conceptually asynchronous, i.e. the
workflow engine does not expect the invoke method to return a value. This is a necessity for sup-
porting tools that run for a long period of time (e.g. a tool that allows manual input of data). The
process that calls complete on the activity may be completely different from the thread that in-
voked the tool agent.

Practical experience shows, however, that a lot of tools can reasonably execute completely within
the invoke method. In order to simplify the implementation of this class of tools and avoid some
problems with transactions (again, see de.danet.an.workflow.spis.aii [254] for details), the interface
ResultProvider (see Section A.3.8, “Interface ResultProvider” [261]) has been defined. A tool
agent implementing this interface can provide its result in a simple function call and the workflow
engine handles forwarding the result to the activity and completing the activity.

3.5.2. Accessing the workflow engine context
Sometimes, tool agents need access to some workflow engine functions. While it is technically pos-
sible for tool agents to access the WorkflowEngineEJB (and older versions of the tools coming
with WfMOpen did rely on this), this behavior is strongly discouraged. The methods that may be
called by tool agents are made available in a ToolAgentContext (see Section A.3.11, “Interface
ToolAgentContext” [265]). Tool agents that want to use this context must implement the interface
ContextRequester (see Section A.3.4, “Interface ContextRequester” [257]) and will receive the
context before method invoke is called2.

3.5.3. Accessing JNDI
As tool agents run in the application server context, they can always access the application server's
JNDI directory using "new InitialContext()". This context provides all global entries
(including those restricted to local access from within the JVM, i.e. "java:...").

Sometimes it may be desirable to use logical names as provided for EJBs
("java:comp/env/...") instead of global names. This may facilitate deployment, because the
mapping of the logical names used by the tool agents to global names can be administered in the
same way as e.g. for mapping data sources used by EJBs.

While tool agents are not EJBs themselves, WfMOpen guarantees that tool agents run in the context
of a business method of the InvocationHelperEJB. Tool agents can therefore additionally
lookup via JNDI all entries that are bound to the "java:comp/env/" namespace of the Invoc-
ationHelperEJB. To provide a logical name for use by a tool agent, it is therefore sufficient to
add the required entry to the InvocationHelperEJB's section in ejb-jar.xml. We recom-
mend to put entries created in this namespace for the sole use of a tool agent in a subcontext
"java:comp/env/toolagents/agent name/...".

3.5.4. Exception handling

3.5.4.1. Default behaviour

As can be seen in the declaration of the ToolAgent interface (see Section A.3.10, “Interface
ToolAgent” [263]), tool agents can throwRemoteExceptions and CannotExecuteExcep-
tions.

In general, and especially in the J2EE environment, RemoteExceptions received when access-
ing a (remote) component can be interpreted as an indication that a service is temporarily unavail-
able. The current transaction should be rolled back and retried. To avoid having to implement this
behaviour in every tool agent, the tool agent may indicate such a condition by raising a Re-
moteException. Usually, the tool agent does not create such an exception itself, rather it propag-
ates an exception that it has received when accessing a remote component. The workflow engine
does roll-back and re-invocation automatically if a ToolAgent raises a RemoteException.

Accessing the workflow engine con-
text

31

3Acting as if execution had manually been suspended also applies to deadlines. If deadlines have expired while the activity
has been in the suspended state caused by the exception, they will be handled as described in Section 2.5, “Suspended state
and deadlines” [19]

Tools may also throw CannotExecuteExceptions during their execution. The workflow en-
gine's default response to such an exception is to terminate the activity, and thus the process (see
Section 2.1, “States of processes and activities” [15]). An exception raised by a tool is considered an
indication of unexpected behaviour and it would be dangerous to continue the process after encoun-
tering an unexpected behaviour of a tool.

3.5.4.2. Overriding the default behaviour

The default behaviour may be overridden by either the tool or the application declaration. A tool can
specify a mapping of Java exceptions that are reported as cause of the CannotExecuteExcep-
tion to process level exceptions (see Section 2.4, “Exceptions” [18]) by implementing the inter-
face ExceptionMappingProvider (see Section A.3.5, “Interface ExceptionMappingProvider”
[257]). The process definition can define such a mapping as described in Section 4.2.5.1, “Extentions
of Application Declaration” [35]. Exceptions reported as cause of theCannotExecuteExcep-
tion by the tool are first matched against the mappings from the application definition and then
against the mappings from the tool.

Note that there is some redundancy between exception mapping and the method abandonActiv-
ity made available by the workflow engine context (see Section 3.5.2, “Accessing the workflow
engine context” [31] and Section A.3.11, “Interface ToolAgentContext” [265]). The main difference
is that a call to abandonActivity cannot be redefined by the application declaration, it will al-
ways lead to the specified process level exception. Method abandonActivity should therefore
be used if raising a specific process level exception is part of the tool's bahavioral specification and
handling the condition differently is not an option.

If a tool deliberately uses an exception type as cause when constructing a CannotExecuteEx-
ception and at the same time defines a mapping for this type of exception, it offers the user the
possibility to redefine the bahavior. This is especially useful if the Java exception type has sub-
classes. In this case, the user of the tool has the possibility to specify special process level excep-
tions for the subclasses of the Java exception in the application declaration and can thus achieve dif-
ferentiated behaviour.

3.5.4.3. Stopping the workflow

In addition to defining system exceptions for Java exceptions, the exception mapping may specify
that the invoking activity should enter the open.not_running.suspended.abandoning
state when the exception occurs. This will delay the actual delivery of the exception until the activ-
ity is resumed. Such a behaviour may be desired if unexpected exceptions should stop the process
rather then terminate it. If e.g. combined with an exception transition that simply leads back to the
activity, this offers the possibility to repeat the tool (agent) invocation after fixing the exception's
cause (e.g. by modifying some data or restarting a required service).

Instead of simply resuming an activity from state
open.not_running.suspended.abandoning, the state may first be changed to
open.not_running.suspended.clearing_exception. This is an intermediate state
that causes the activity to clear the pending exception and immediately proceed to "normal" suspen-
ded state open.not_running.suspended.suspended. Effectively, this causes the engine
to ignore the exception, i.e. the engine behaves as if the tool invocation had been successful, and the
activity had been set to the suspended state during tool invocation using the API3. This feature may
be used to manually mend a failed tool invocation by setting the process data to the state expected
after the (failed) tool invocation and resume the normal workflow.

Exception handling

32

Chapter 4. Process definitions
4.1. Managing process definitions

As an extension to the OMG API, the WfMOpen workflow engine is capable of managing an unlim-
ited number of process definitions at a time. To gain access to a specific description, a directory
component has been established, managing all packages and included process definitions (see Sec-
tion A.2.43, “Interface ProcessDefinitionDirectory” [225]).

When a new process definition file is imported (via method importProcessDefinitions), all
currently managed descriptions with the same package id as the imported package (regardless of the
process' name) are removed from the process definition directory before adding any new process
definition.

Note that replacing a process definition with another version (or removing a process definition) does
not affect running processes. Once created, a process remains inseparably associated with the pro-
cess definition that was effective when the process was created.

4.2. Process definition format
4.2.1. Base format

The import format for process definitions is XPDL which stands for "XML Process Definition Lan-
guage". XPDL is a WfMC standard that is currently available as version 1.0 Final Draft.

4.2.2. XPDL and the OMG API
When using the XPDL and the OMG API together, attention has to be payed to the usage of some
keywords. The most prominent among those is the usage of the attribute Id in XPDL vs. the usage
of a key in the OMG API.

Ids are used in the XPDL to enable references between the different items defined. They have no
significance to the OMG API (with one exception, see below). The OMG API uses keys to uniquely
identify instances within their context. So an activity with key "a23" could e.g. be the instance of an
activity that was defined in the XPDL with Id="do_this".

The one exception where Ids have significance in our implementation of the OMG API is the pro-
cess type. The OMG defines a process manager and this process manager has a "name" attribute de-
noting the process type. Currently, we use the Id from the XPDL as the process manager name (this
may, however change in future versions).

It is important to maintain a clean separation between the usage of Id and key when programming
against the workflow API. This is sometimes especially difficult, because keys are often labeled as
"ids" in the user interface.

4.2.3. Specifying XML data
One of the most annoying problems with the current version of XPDL is the schema defined for
InitialValue and ActualParameter tags. Although XPDL introduces a SchemaType,
initial values and actual parameters may only be of type string, thus prohibiting the usage of struc-
tured data.

We have therefore defined that the content of the InitialValue of a DataField of type
SchemaType is parsed as XML and used to initialize the data field. The XML may have multiple
top nodes, i.e. a data field may be used to hold "lists"1. The XML must be self-contained, i.e. if you
use namespaces they have to be declared within the string, namespaces of the XML surrounding

33

1In order to allow a string describing a not well-formed document to be parsed, an opening and closing tag temporary-
root is added before and after the string and the corresponding node is removed from the result after parsing. This should be
transparent to the user unless there is a parsing error. In this case you may find the tag being mentioned in the error message
(though it will never be the cause of the problem).
2Note that this is really executed as a string comparison, i.e. you cannot use another prefix.

InitialValue are not inherited.

Starting with version 1.3.4, WfMOpen supports E4X, the XML extension for JavaScript. E4X intro-
duces the XML "native" type (similar to e.g. the JavaScript native "Date" type) and extends the
JavaScript lexical grammer to directly support XML text as initializers for new objects of this type.
With E4X, parsable XML within JavaScript simply yields a new XML object. Therefore, no special
provisions have to be taken to support actual parameters of SchemaType. An actual parameter
specified as <ActualParameter><![CDATA[<Hello/>]]></ActualParameter> is
passed to the JavaScript interpreter like any other actual parameter expression and evaluates to an
XML object that is used when invoking the tool or sub-process. The XML may also have multiple
top nodes. This can be expressed in E4X as e.g.
<ActualParameter><![CDATA[<><Hello/><World/></>]]></ActualParameter
>.

Note that the JavaScript expression need not be literal XML. It may be an arbitrarily complex
JavaScript that ends with an expression of type XML. The use of complex scripts as actual paramet-
ers is, however, discouraged. A useful alternative to literal XML is e.g. the selection of a subtree
from a process data item of SchemaType, such as
<ActualParameter>purchaseOrder.item.(id=5)</ActualParameter>.

For backward compatibility with WfMOpen versions prior to 1.3.4, a special rule applies. If the ac-
tual parameter starts with the string "<j:jelly"2, it is piped through the jelly interpreter before
being passed to the invoked tool or sub-process. Within the jelly script, the process relevant data
items are available as variables. These variables may not be modified (this is similar to the evalu-
ation of an actual parameter of basic type using JavaScript). Setting a variable with the same name
as a process data item will create a new variable that hides the process data item.

Besides the jelly core tags, the demo application makes the "xml" and "jsl" tags available by includ-
ing the respective libraries. We consider these the only useful tags in the context of actual parameter
evaluation. However, no special measures have been taken to enforce this subset. If other tag librar-
ies are bundled with the application, these will be available as well. As with JavaScript expression,
causing side-effects in actual parameter evaluation is, however, strongly discouraged.

The support for jelly in actual parameter evaluation is deprecated and will be dropped in WfMOpen
2.x.

4.2.4. Deadlines
WfMOpen attempts to parse a DeadlineCondition using the following methods:

1. Parse as a duration as defined in the XML Schema Definition (see XML Schema Part 2, "dura-
tion" [http://www.w3.org/TR/xmlschema-2/#duration]).

2. Parse as a date time specification as defined in the XML Schema Definition (see XML Schema
Part 2, "dateTime" [http://www.w3.org/TR/xmlschema-2/#dateTime]).

3. Parse as value/unit pairs. Values can be arbitrary JavaScript expressions, valid unit names are
"years", "yrs", "months", "mts", "hours", "hrs", "min" and "sec". There may be only one pair for
each unit i.e. "5 years 3 yrs" is illegal.

Value/unit pairs must be separated from each other with at least one whitespace character. Units
may follow values immediately if the value is a number, else they must be separated by at least
one whitespace.

Any duration unit may be omitted, but the descending order of units must be preserved.

When evaluating the JavaScript expression, process relevant data is available as read-only vari-

Deadlines

34

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

ables. The evaluation must yield a number.

4. Parse as a date time specification in the formats "d MMM yy HH:mm:ss z" and "d MMM yy
HH:mm z" (see java.text.SimpleDateFormat). An optionally leading "EEE, "
(abbreviated day) is ignored. These formats include RFC822 conformant date time specifications.

5. Evaluate as JavaScript. In this evaluation, process relevant data is available as read-only vari-
ables. The script must return a JavaScript "Date" type or a number. A result of type "Date" is in-
terpreted as absolute time specification, a number is interpreted as seconds relative to the start
time of the activity.

4.2.5. Defined extensions
Trying to define a process definition language that can be used for any workflow engine, the WfMC
had to leave out some implementation specific details. The missing information has to be provided
using vendor specific extentions. The following sections describes the extensions used by Wf-
MOpen.

4.2.5.1. Extentions of Application Declaration

Within the XPDL file, a tool or application can only be declared or referenced. XPDL does not spe-
cify elements that can be used to describe the definition of the application. Usually, the binding to
application implementation is handled for example by an object manager. To keep the process defin-
ition self-contained, we have chosen the straightforward approach of defining the definition details
within the tool declaration. This has been achieved by defining an extended attribute named Im-
plementation.

...
<Application Id="INCREMENT">

<Description>Marking the current station within the transition path.
</Description>
<FormalParameters>

<FormalParameter Id="counter" Mode="INOUT">
<DataType>

<BasicType Type="INTEGER"/>
</DataType>

</FormalParameter>
</FormalParameters>
<ExtendedAttributes>

<ExtendedAttribute Name="Implementation">
<vx:ToolAgent
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1"
Class="de.danet.an.workflow.tools.rhino.JSExecutor"
Execution="SYNCHR"
XMLParamterMode="USE_W3C_DOM">

<vx:Property Name="Script"><![CDATA[
java.lang.System.out.println ("Incrementing counter "

+ args["counter"]);
args["counter"] = args["counter"] + 1
]]></vx:Property>
</vx:ToolAgent>

</ExtendedAttribute>
</ExtendedAttributes>

</Application>

In the example above, an application is declared with its implementation class
(de.danet.an.workflow.tools.rhino.JSExecutor) specified as an extended attribute.
The implementation class must implement
de.danet.an.workflow.spis.aii.ToolAgent (see Section A.3.10, “Interface ToolA-
gent” [263]) and providesetXXX methods for each declared Property element.

Defined extensions

35

3Added in 1.3.4

In our example de.danet.an.workflow.tools.rhino.JSExecutor must thus imple-
ment a method setScript. If the content of a <Property> node is text, the required argument
of the setXXX method must be of type java.lang.String. If the content of a <Property>
node is another element, the argument may be either org.jdom.Element or
org.w3c.dom.Element depending on the tool agent's preferred environment.

The execution type of a tool agent can be defined as SYNCHR or ASYNCHR (default) so that it may
be executed synchronously or asynchronously with respect to state evaluation (see Section A.3.10,
“Interface ToolAgent” [263]).

The actual parameters passed to the tool that are declared as <SchemaType> will be passed as
org.w3c.dom.Element (default), org.jdom.Element or
de.danet.an.workflow.api.SAXEventBuffer (see Section A.2.48, “Interface
SAXEventBuffer” [236]) depending on the attributeXMLParameterMode. Possible values are
"USE_W3C_DOM" (making the default explicit), "USE_JDOM" or "USE_SAX". Note that the set-
ting will only be effective if the tool does not implement the XMLArgumentTypeProvider in-
terface (see Section A.3.12, “Interface XMLArgumentTypeProvider” [268]).

An additional attribute Handler (not shown above) can be used to cause invocation of the tool
agent in another InvocationHelperEJB than the default one (usually in another EAR). See
Section 1.3.5, “The optional callback module” [7] for a general description of this concept. Note that
you must use the extended namespace ht-
tp://www.an.danet.de/2009/XPDL-Extensions1.1 instead of the old namespace ht-
tp://www.an.danet.de/2002/XPDL-Extensions1.0 if you want to specify the hand-
ler.

An application declaration may optionally include the definition of mappings of Java exceptions re-
ported by the tool agent to process level exceptions (see Section 3.5.4, “Exception handling” [31]).
The mapping is declared as child of the ToolAgent element, before the Property elements:

...
<vx:ToolAgent ... >
<vx:ExceptionMappings>
<vx:ExceptionMapping JavaException="java.lang.Exception"

ProcessException="Error"/>
</vx:ExceptionMappings>

<vx:Property Name="Script"> ...

If the attribute ProcessException is omitted, the default behaviour of terminating the activity
when the exception occurs is re-established (overriding a mapping established by the tool agent im-
plementation programatically, see Section A.3.5, “Interface ExceptionMappingProvider” [257]).

4.2.5.2. Extensions on Package and Process Level

Extensions:

RemoveClosedPro-
cess

determines how the workflow engine removes a closed process. Val-
ues can be MANUAL, AUTOMATIC or COMPLETED 3 (default:
AUTOMATIC). Starting with version WfMOpen version 1.3.1, the
value for this extension may be specified either as attribute "Value"
or as (textual) body of <ExtendedAttribute>. The latter form
is considered deprecated. COMPLETED causes the process to be re-
moved automatically only if its completion state is
closed.completed. This is useful for keeping processes that
have failed for debugging purposes.

Debug if True, the process will be started in debug mode (see Section 2.6,
“Debugging workflows” [19]). This can be specified on process level
only. Starting with version WfMOpen version 1.3.1, the value for this
extension may be specified either as attribute "Value" or as (textual)
body of <ExtendedAttribute>. The latter form is considered
deprecated.

Defined extensions

36

AuditEventSelec-
tion

The audit events reported by this process will be restricted as spe-
cified in the attribute "Value". The restriction applies both to the
events reported to an audit handler (see re-
ceiveEvent(de.danet.an.workflow.omgcore.WfAuditEvent) [108]) and
the events saved in the audit trail (see history() [113]) (see remarks at
the end of this section).

Valid values for the audit event selection are:

AllEvents All events will be reported. This is the de-
fault, i.e. equivalent to not specifying this ex-
tended attribute at all.

StateEvent-
sOnly

Only state change events (i.e. events of type
WfStateAuditEvent, see Section A.1.46,
“Interface WfStateAuditEvent” [143]) will be
reported.

ProcessClose-
dEventsOnly

Only state change events caused by a process
assuming the closed state will be reported.
This filter is useful if you have clients that
use the notification mechanism to wait for the
completion of processes.

NoEvents No events will be reported.

StoreAuditEvents If the attribute "Value" is set to "False" the selected audit events
(see above) will not be written to the event log. Consequently, they
cannot be retrieved using the history method of the WfExecu-
tionObjects created by this process (see history() [113]). The selec-
ted audit events will still be delivered to audit handlers (see remarks
at the end of this section).

Example:

...
<package>
...
<WorkflowProcesses>
<WorkflowProcess>
...
<Activities>
...

</Activities>
<ExtendedAttributes>
<ExtendedAttribute Name="RemoveClosedProcess" Value="MANUAL"/>
<ExtendedAttribute Name="Debug" Value="True"/>
<ExtendedAttribute Name="AuditEventSelection" Value="AllEvents"/>
<ExtendedAttribute Name="StoreAuditEvents" Value="True"/>

</ExtendedAttributes>
</WorkflowProcess>

</WorkflowProcesses>
<ExtendedAttributes>
<ExtendedAttribute Name="RemoveClosedProcess" Value="AUTOMATIC"/>

</ExtendedAttributes>
</package>
...

Filtering out events or disabling the audit trail causes the observable behaviour of the process at the
API to deviate from the standard. It may nevertheless be a useful option as it reduces the number of
database transactions significantly and thus increases throughput. Especially when using workflow
processes to work off batches of datasets, a workflow specific logging provided by the invoked tools
will most likely be more useful than the default audit trail.

Defined extensions

37

4.2.5.3. Extensions on the Activity Level

Extensions:

DeferredChoice if set to true the AND-split of an activity will be ex-
ecuted as deferred choice. See Section 4.3.5, “Deferred
choice” [42] for an explanation of the semantics.

4.2.6. Miscellaneous
The definition and interpretation of the priority of a WfExecutionObject (e.g. a Process) differs
between WfMC and OMG. According to WfMC, the priority can be any natural number starting
with zero and higher numbers represent higher priorities. Conforming to the OMG specification, the
priority has to be an integer between 1 to 5 with 1 being the highest priority. We have chosen to sup-
port OMG's specification which means that the priority specified in the process XPDL must be an
integer value between 1 and 5 with descending priority and the result of a priority request (see prior-
ity() [115]) delivers the priority with equal semantic.

Since it is not defined how to obtain the category of the process manager from the XPDL descrip-
tion, we have chosen to interpret the package's Name attribute as being the category value. The
same applies to the version attribute, which we have chosen to map to the element created within the
process header definition.

Please note, that if you don't specify the script type for you package, it will default to "text/
ecmascript" which is the most common used language for scripting within this context.

4.3. Semantics
XPDL (XML Process Definition Language) defines the syntax and grammar for the description of
workflow processes that can be imported into the WfMOpen engine. Unfortunately XPDL is not
precise about the interpretation of some description elements. This chapter describes our interpreta-
tion of all XPDL language elements that are important for the definition of the process flow.

Usually a workflow consists of some or all of the following elements:

• Activities that should be performed in a given order (successively and/or concurrently).

• Transitions between activities (described by "from" and "to" declarations), defining the execution
sequence.

• Conditions for the transitions as criteria for the execution of the transition.

4.3.1. Start and finish of a process
Since XPDL does not define attributes for marking the first or last activity within a workflow, we
have chosen to use those activities to be initially started which are not referenced within a "to" de-
claration of any of the workflow's transitions. We think this is an obvious approach that does not re-
strict the number of inital activities. Usually there will be only one entry activity but you may also
define several one's which will then be started concurrently. That implies, that there has to be at
least one of those activities or nothing will be started at all (in fact, a warning will report such a con-
dition on import of the workflow description).

The workflow engine considers a running process as finished when there is nothing more to do, i.e.
when after the completion of an activity there is no other activity currently running and no other
activity to start (for a detailed description of process and activity states see Section 2.1, “States of
processes and activities” [15]).

Miscellaneous

38

4.3.2. Split and Join
The simplest case of a workflow is one with just a single activity, thus defining the start and end
point. As soon as a second activity is added that should run after the completion of the first, a trans-
ition between the two activities has to be defined. A transition has a "from" and a "to" attribute, ref-
erencing start and target of the connection. Once the "from" activity is completed, the "to" activity is
started (assuming there are no conditions defined).

In real life, workflows do not just incorporate activities that will be started one after the other but
there may be activities to be started concurrently or choices of activities depening on certain condi-
tions.

There are typically two different situations to be dealt with when there is more than one subsequent
activity:

• XOR-Split: One of many activities may be selected at runtime depending on certain conditions.

• AND-Split: Some of many activities may be selected at runtime depending on certain conditions.

In either case we have to deal with conditions describing selection criteria for the transition to be
chosen. The language that is used to describe the condition can be defined via the "Script" element
of the package. WfMOpen uses Javascript by default.

The workflow engine expects a boolean to be returned. That means, if more than one line of code is
defined only the last one defines the condition. Prior statements may be used e.g. for debugging pur-
poses. Note that conditions are evaluated exactly once when the "from" activity is completed.

Example:

...
<Condition Type="CONDITION">
java.lang.System.out.println ("counter is " + Counter);
Counter < 3

</Condition>
...

Since XOR-Splits are used to select one of many activities although more than one of the given con-
dition may evaluate to "true", an evaluation order has to be defined. This is done within the
TransitionRestrictions of the activity. As soon as the first condition matches, this trans-
ition is chosen, the target activity is started and no further evaluation is performed.

Split and Join

39

Figure 4.1. XOR-Split example

The definition of this workflow section may look like this:

...
<WorkflowProcess Id="XorSplitSample">
<ProcessHeader/>

<DataFields>
<DataField Id="avg_payroll" IsArray="FALSE">
<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</DataField>
<DataField Id="test_payroll" IsArray="FALSE">
<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</DataField>

</DataFields>

<Activities>
<Activity Id="check_payroll">
<Implementation>
<No/>

</Implementation>
<TransitionRestrictions>
<TransitionRestriction>
<Split Type="XOR">
<TransitionRefs>
<TransitionRef Id="granted"/>
<TransitionRef Id="declined"/>

</TransitionRefs>
</Split>

</TransitionRestriction>
</TransitionRestrictions>

</Activity>
<Activity Id="decline_salary_increase">
<Implementation>
<No/>

</Implementation>
</Activity>
<Activity Id="accept_salary_increase">
<Implementation>
<No/>

</Implementation>
</Activity>

</Activities>

<Transitions>
<Transition Id="declined" From="check_payroll" To="decline_salary_increase">
<Condition Type="OTHERWISE"/>

</Transition>
<Transition Id="granted" From="check_payroll" To="accept_salary_increase">
<Condition Type="CONDITION">
avg_payroll < test_payroll
</Condition>

</Transition>
</Transitions>

</WorkflowProcess>
...

For AND-Splits no evaluation order is needed, since each transition with a condition evaluating to
"true" is chosen and the target activity is started. Note that the workflow engine will start each of
those activities in a different thread so that they are performed simultaneously.

Split and Join

40

4 WfMOpen versions up to 1.3.2 behaved differently. If an activity with AND-Join was triggered by a transition, the condi-
tions of all other incoming transitions would be evaluated at that point in time (with evaluation errors for OTHERWISE and
for abandoned predecessor activities). This behaviour is not an option as it can lead to unexpected results under certain cir-
cumstances. Starting with 1.3.3, WfMOpen behaves as defined above (including proper handling of OTHERWISE and aban-
doned activities).
5Note that you may not loop back to an entry activity, i.e. an activity that you want to be started when the process is started,
because by doing so it will be no longer be detected as entry activity (remember, that the engine looks for activities that is not
referenced within a "to" declaration of any transition!).

As for splitting there a also typically two different situations to be dealt with when joining parallel
activities into a common thread:

• XOR-Join: The first completed activity should trigger the joining activity. Note that the joining
activity starts parallel to any predecessing activity, not yet completed.

• AND-Join: The joining activity is triggered as soon as all predecessing activities are completed.
This situation may also be described as "synchronization" of acitities.

Since predecessing activities and the joining activity are connected via transitions, you may also
define conditions here that will be evaluated before triggering. So, within an XOR-Join, the first
completed activity with a matching condition will trigger the joining activity. Note that, in contrast
to the XOR-Split, no evaluation order is needed here since it is defined implicitely by the the race
condition of the activites. Once the second of the predecessing activities is completed, the engine
will detect that the joining activity is (no longer) in state "not started" and thus do nothing with it.

A special case of join occurs, when a predecessing activity is at the same time a subsequent activity
of the joining activity. This situation describes a loop within a workflow which will be discussed in
more detail in the following section.

4.3.3. Condition evaluation
Condition evaluation for outgoing transitions takes place when an activity transitions to the
closed... state. This is important to know in order to understand the behaviour of activities that
use AND-Join.

If such an activity has two incoming transitions from e.g. activities pre1 and pre2 it may happen
that pre1 reaches its closed state long before pre2. If the transition from pre1 has a condition
that depends on some process relevant data item, the value of this data may have changed after
pre1 has reached the closed state but before pre2 finishes. According to the definiton above, the
condition will be evaluated based on the value at the time when pre1 reaches the closed state, sub-
sequent changes of the process relevant data will not change the result of this evaluation4.

4.3.4. Loops
Looping within a workflow means that the workflow comes back to an activity that has already been
completed before. WfMOpen supports loops in a very straightforward way and without limitations
concerning start and end points of loops5.

There is no special attribute defining an activity or transition being part of a loop. Rather the work-
flow engine of WfMOpen detects a loop by tracking the running workflow. As soon as a transition
targets an activity that has already been marked as "been on the path", this activity is considered as
entry point of a loop (the activity must, of course, have an XOR-Join mode).

If the target activity is completed, the workflow engine first resets the state of all activites on the
path that lead to that activity to "not started" and the (re-)starts the target activity.

Asynchronous deadlines constitute new independant threads. Thus the activity started by the dead-
line has an empty path. You can therefore not loop back to the activity that defined the deadline.
You can loop back to the activity started by the asynchronous deadline e.g. to have it re-triggered by
a later deadline (though you'll need an extra route activity because of join conditions).

Condition evaluation

41

Synchronous deadlines continue processing using the same thread. Thus all activities that have been
adandoned due to the deadline are predecessors of the activity started because of the deadline (there
may be more than one activity that is abandoned because of the deadline if the deadline occurs on a
block activity). The simplest usage of this behaviour may be a synchronous deadline that points
back to the synchronous activity, thus causing a maybe different assignment of resources.

4.3.5. Deferred choice
WfMOpen supports the "deferred choice" pattern as described on the workflow patterns site [ht-
tp://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm]. The pattern is implemented by de-
fining an optional extended attribute for activities with an AND-split. E.g.:

...
<Activity Id="act1" Name="ACT1">
<Implementation>
<No/>

</Implementation>
<StartMode>
<Automatic/>

</StartMode>
<FinishMode>
<Automatic/>

</FinishMode>
<TransitionRestrictions>
<TransitionRestriction>
<Split Type="AND"/>

</TransitionRestriction>
</TransitionRestrictions>
<ExtendedAttributes>
<ExtendedAttribute Name="DeferredChoice">true</ExtendedAttribute>

</ExtendedAttributes>
</Activity>

All activities following the activity with the deferred choice option set are started "preliminary". The
activity (or tool started by the activity) that first performs a modification of the workflow engine's
state automatically becomes the chosen activity. Modification of state includes a tool's calls to
setResult() and complete(), the completion of an activity that has no implementation and
the termination and abandoning of an activity. All other preliminary chosen activities are reset to the
"not started" state (see Section 2.1, “States of processes and activities” [15]) after terminating any
tools that are being run by these activities.

The preliminary choice implies the possibility that a tool executed by an activity has already per-
formed some work that cannot be rolled back when the preliminary choice is revoked, i.e. in the
tool's implementation of terminate(). A "deferred choice aware" tool may therefore prema-
turely (i.e. before calling setResult() or complete()) force the eventual choice to be made
by calling choose() on the activity (see choose() [148]). An example of such a case would be a user
front-end where the selection of an assigned activity (i.e. the begin of work) is already decisive for
the continuation of the process. If not invoked as part of a deferred choice, the call to choose()
simply does nothing.

Deferred choice

42

http://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm
http://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm
http://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm

1 Note that the application declarations in this section have been updated to use the new namespace ht-
tp://www.an.danet.de/2009/XPDL-Extensions1.1 that has been defined for version 2.1.2. If you do not want
to specify a Handler attribute as described in Section 4.2.5, “Defined extensions” [35], you may still use the old namespace
http://www.an.danet.de/2002/XPDL-Extensions1.0.

Chapter 5. Tools
5.1. Overview

Tools are the "workhorses" of a workflow process. They call backend systems, retrieve data from a
database, process data etc. WfMOpen comes with a set of ready-to-use tools and allows you to add
your own tools using some well-defined APIs.

The tools included in the distribution are:

XForms tool this tool can be used to build a web dialog for filling out data
fields (see Section 5.2, “The XForms Tool” [43]).

JSExecutor and JSExecutor2 these tools implements an interface to the Rhino JavaScript inter-
preter (see Section 5.3, “JavaScript tools” [46]).

JellyTool this tool implements an interface to the Jelly XML interpreter (see
Section 5.4, “Jelly tool” [47]).

LDAP Tool this is an extension of the Jelly tool that allows easy LDAP quer-
ies and manipulation (see Section 5.4.2, “LDAP tag library” [48]).

MailTool this tool implements an interface to the javax mailing service (see
Section 5.5, “Mail tool” [51]).

XSLTTool this tool implements a tool that invokes a xslt processor dynamic-
ally (see Section 5.6, “XSLT tool” [52]).

Generic SOAPTool this tool implements a tool that invokes SOAP based web services
dynamically (see Section 5.7, “Generic SOAP tool” [54]).

RPC SOAPTool this tool implements a tool that invokes web services with SOAP
RPC style dynamically (see Section 5.8, “RPC SOAP tool” [55]).

WaitTool this tool waits for a given time span, optionally in an interruptable
way (see Section 5.9, “Wait tool” [56]).

MBeanInvoker this tool invokes a method of an MBean (see Section 5.10,
“MBean invocation tool” [58]).

Channel based Access Tools that support message oriented communication with process
instances (see Section 5.12, “Channel based access” [59]).

The following sections describe the predefined tools and provide some hints for implementing addi-
tional tools1.

5.2. The XForms Tool
5.2.1. Usage

43

If an activity requires human interaction such as providing some data in a form, the activity may
submit a form and associated initial data to the XForms tool. Then, the user associated with the
activity invokes the XForms tool in order to manually complete the activity.

The XForms tool is an example of asynchronous application invocation and therefore consists of
two components. The first component, the tool agent, is invoked by the workflow engine and puts
information about the form to complete and the assignee in the database. The second component, the
actual application, consists of a portlet. Initially, it lists all activities assigned to the currently logged
in user. The display distinguishes between activities that are directly assigned to the current user and
activities that are indirectly assigned, i.e. that are assigned to groups or roles the current user be-
longs to.

Figure 5.1. XForm task list

The web form for a specific activity is selected and displayed by selecting the link in the "Activity"
column. The form may then be used to enter the required data. When the form is submitted, the
entered data is used as result data of the activity and the activity is set to state "completed".

Figure 5.2. XForm sample

Usage

44

5.2.2. Defining an XForms application in the process
definition

An application of type "XFormTool" is specified in the process definition as described in Sec-
tion 4.2.5.1, “Extentions of Application Declaration” [35], with the extended attribute Imple-
mentation referencing the class de.danet.an.xformstool.Submitter.

The tool agent has a mandatory property named Form that defines the XForm (see XForms spe-
cification [http://www.w3.org/MarkUp/Forms]) to display.

A complete example of such an application definition is shown below:

...
<Application Id="SimpleForm">
<Description>
Simple data form.

</Description>
<FormalParameters>
<FormalParameter Id="input" Mode="OUT">
<DataType><BasicType Type="STRING"/></DataType>

</FormalParameter>
</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.xformstool.Submitter"
Execution="SYNCHR">
<vx:Property Name="Form">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<head>
<title>Simple Form</title>
<style>
.SimpleForm .control { display:block; }
.SimpleForm .control label {

display:block; float:left; width:9em; }
</style>
<xforms:model>
<!-- Instance will be inserted here -->

<!-- override/add some bindings -->
<xforms:bind id="SimpleForm:input"
nodeset="ActualParameter[@name='input']"
constraint="string-length(.) > 0"
required="true()"/>

</xforms:model>
</head>
<body class="SimpleForm">
<xforms:group id="C-3" appearance="minimal">
<xforms:label id="C-4">Simple Form</xforms:label>
<xforms:input bind="SimpleForm:input" incremental="true">
<xforms:label>Input </xforms:label>
<xforms:alert>Field may not be empty!</xforms:alert>
<xforms:hint>Please enter something.</xforms:hint>
<xforms:help id="C-7h">Use the keyboard.</xforms:help>

</xforms:input>
<xforms:submit submission="action">
<xforms:label>Complete</xforms:label>

</xforms:submit>
</xforms:group>

</body>
</html>

</vx:Property>
</vx:ToolAgent>

</ExtendedAttribute>

Defining an XForms application in the
process definition

45

http://www.w3.org/MarkUp/Forms
http://www.w3.org/MarkUp/Forms
http://www.w3.org/MarkUp/Forms

2CSS styles can only be defined on the page level.

</ExtendedAttributes>
</Application>
...

The form definition consists of XHTML and XForms elements. It must have an <xhtml:html>
as root element. The nested <xhtml:head> may have a <xhtml:title>. If specified, it is dis-
played as title of the portlet when the form is selected and displayed. Any specified styles are copied
to the the portal page2. To avoid ambiguities between forms display in different portlets on the same
page, the style declarations should be made unique by starting the match expression with the applic-
ation's id as a class. The HTML rendered for the form in the portlet will have an enclosing <div>
with the application's id as class attribute. CSS styles specified with this class name in the match ex-
pression will therefore only apply to this form and no other form on the same portal page.

As last child of <xhtml:head>, the tool automatically generates and inserts an XForms model
derived from the formal parameters. The model looks like this:

<xforms:model>
<instance xmlns="">
<ActualParameters xmlns="">
<ActualParameter name="input"/>

</ActualParameters>
</instance>
<submission xmlns="http://www.w3.org/2002/xforms"
action="invoke:application" id="action" method="" replace="none"/>

<xforms:bind id="SimpleForm:input"
nodeset="ActualParameter[@name='input']"/>

</xforms:model>

For each formal parameter, an element <ActualParameter> is generated with an attribute
"name" that equals the id of the formal parameter. In addition, a binding is generated for each form-
al parameter with an id derived from the combination of the application id and formal parameter id.
These generated bindings may be overridden and supplemented with bindings supplied in the
XForm description as shown in the example above.

Finally, the form defines the <xhtml:body> with the actual GUI elements. The form is processed
with Chiba XForms processor (see Chiba home page [http://chiba.sourceforge.net/]). See the Chiba
documentation for details about how HTML generated from the XForm definition.

5.3. JavaScript tools
The JavaScript tools can be used to execute embedded java script code (see example in Sec-
tion 4.2.5.1, “Extentions of Application Declaration” [35]). The tool comes in two flavours. Both
support JavaScript 1.5 with E4X. They differ in their handling of arguments.

The class de.danet.an.workflow.tools.rhino.JSExecutor provides an implementa-
tion that references formal parameters of the tool invocation in the script via
args["parameter_id"]. Parameters of numeric type and of type String are made available
as the corresponding JavaScript objects. Parameters of type Date and SchemaType are not con-
verted. Rather the internally used Java representation (java.util.Date or
de.danet.an.workflow.api.SAXEventBuffer respectively, see Section A.2.48,
“Interface SAXEventBuffer” [236]) is passed to the JavaScript interpreter. Usage of this flavour of the
tool is considered deprecated. However, the tool will remain part of WfMOpen.

Class de.danet.an.workflow.tools.rhino.JSExecutor2, available since version
1.3.4, represents the modern flavour of the tool. It provides the formal parameters declared for the
tool as top-level JavaScript variables. In addition to the convertions of numeric types and strings,
this version of the tool also converts parameters of type Date to JavaScript Date objects and para-
meters of SchemaType to JavaScript (E4X) XML objects.

JavaScript tools

46

http://chiba.sourceforge.net/
http://chiba.sourceforge.net/

3This behaviour differs from the behaviour defined for ToolAgentContext.abandonActivity (see abandonActiv-
ity(java.lang.String) [266]), which returns after passing the information to the workflow engine and allows the Java program-
mer to asynchronously cleanup resources.
4This is intended as an immediately (i.e. without setting up additional data sources) working example. Of course, you should
never access the workflow engine's database directly, use the API instead!

Besides the arguments, the JavaScript execution environment provides the global variable
scriptingContext. This context defines the following methods and properties.

• The method abandon(String) (see Section A.3.11, “Interface ToolAgentContext” [265]). In-
voking this method causes the JavaScript execution to be terminated3 and the exeption name used
as parameter to be passed to the condition evaluation for transitions to subsequent activities.

• The property activityUniqueKey. This property is of type ActivityUniqueKey (see
Section A.2.11, “Class ActivityUniqueKey” [166]) and may be used to obtain some information
about the invoking activity.

As the implementation of the JavaScript tool is based on Mozilla's Rhino implementation (see ht-
tp://www.mozilla.org/rhino), you may use all features of this package (e.g. call static member func-
tions of java classes within the JavaScript code). Example:

java.lang.System.out.println
("Waiting " + args["ms"] + "ms");

5.4. Jelly tool
The Jelly tool can be used to execute Jelly script code (see Jelly documentation [ht-
tp://jakarta.apache.org/commons/jelly/]). A Jelly script is basically XML that consists of tags that
are either copied to the output or processed by the Jelly interpreter. Processing tags may result in the
generation of additional XML nodes in the output.

5.4.1. General usage
The first formal parameter of a Jelly tool declaration must be an OUT parameter of SchemaType. It
receives the result, i.e. the generated XML. The other formal parameters of the tool invocation may
be of arbitrary type and are directly available as variables within the Jelly script. Values assigned to
variables that correspond to formal OUT or INOUT parameters in the Jelly script will change the val-
ues of the actual parameters upon tool completion.

Its SQL library makes Jelly the perfect tool for interfacing between XML data structures and an RD-
BMS. The library provides the same tags as the JSTL SQL tag library [ht-
tp://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html]. The sample script below retrieves the
names of the process definitions from the Workflow engine's database4.

...
<Application Id="DBJelly">
<Description>Database Jelly test</Description>
<FormalParameters>
<FormalParameter Id="result" Mode="OUT">
<DataType>
<SchemaType/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.JellyTool">
<vx:Property Name="Script">
<j:jelly trim="false" xmlns:j="jelly:core" xmlns:x="jelly:xml"
xmlns:html="jelly:html" xmlns:sql="jelly:sql"
xmlns:sqlx="jelly:de.danet.an.util.jellytags.Library">

Jelly tool

47

http://www.mozilla.org/rhino
http://www.mozilla.org/rhino
http://jakarta.apache.org/commons/jelly/
http://jakarta.apache.org/commons/jelly/
http://jakarta.apache.org/commons/jelly/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html

<sql:setDataSource dataSource="jdbc/WfEngine"/>

<sqlx:query var="results">
SELECT PackageId, ProcessId FROM ProcessDefinition
WHERE PackageId = ?
<sql:param value="jellytests"/>

</sqlx:query>

<dataSet>
<j:forEach items="${results.rowsByIndex}" var="row">
<row>
<j:forEach var="columnName"
items="${results.columnNames}" indexVar="i">
<field column="${columnName}">${row[i]}</field>

</j:forEach>
</row>

</j:forEach>
</dataSet>

</j:jelly>
</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>
...

The example script uses a special query tag. This tag uses a PreparedStatement wrapper
from the Danet utility library that handles large strings correctly even if you use Oracle as RDBMS.
A similar update tag is available in the namespace
jelly:de.danet.an.util.jellytags.Library as well.

Although it is possible to define "stand-alone" data sources for your RDBMS using the SQL tag lib-
rary, it is much better to use the pooled connections managed by the application server. The SQL tag
library supports access to these pools via JNDI, as shown in the example. Note that
"java:comp/env/" is prepended before the data source name (so the lookup made in the sample
code is "java:comp/env/jdbc/WfEngine"). The data source must therefore be defined as a
logical name in an EJB context. All tools are invoked from a business method of the Invoca-
tionHelperEJB. Therefore, if you need additional data sources, you have to define them in this
EJB's context (either by modifying ejb-jar.xml and its associated application server specific
descriptor manually or by using some tool from your application server vendor).

As the tool is executed in the context of an EJB's business method, the <transaction> tag
should not be used. The business method that invokes the tool has the container managed transac-
tion attribute set. Thus the application server automatically wraps all database queries and updates
executed during the tool invocation in a transcation.

Note that there are a lot of tag libraries available for Jelly. Some of these interface to quite complex
libraries. The demo applications (see Appendix C, The demo applications [337]) includes only the tag
libraries "jsl", "log", "sql", and "xml". Of course, you are free to re-pack the application with more
libraries included.

5.4.2. LDAP tag library
Thinking about an LDAP tool, we found that a query tool can be implemented in a straight forward
manner. A tool that also supports LDAP manipulation, however, would require an unmanageable
number of configuration properties to support the different kinds of queries imaginable. We have
therefore implemented an LDAP tag library for Jelly that enables easy query and manipulation of an
LDAP directory.

5.4.2.1. <ldap:setInitialContext>

All query and update tags require a connection to the LDAP server. This connection can be obtained
with the <ldap:setInitialContext>. The usage pattern is:

LDAP tag library

48

<ldap:setInitialContext
var="ctx"
xmlns:ldap="jelly:de.danet.an.util.jellytags.ldap.Library"
providerUrl="ldap://localhost:389"
securityPrincipal="cn=Manager,dc=my-domain,dc=com">
<ldap:environmentEntry name="java.naming.security.credentials"

value="${credential}"/>
</ldap:setInitialContext>

The <ldap:setInitialContext> tag creates a connection (actually an initial DirContext)
and assigns it to the variable named in attribute var. Nested within the tag are
<ldap:environmentEntry name="..." value="..."/> tags that specify values for
the environment used to obtain the initial context (see Sun's JNDI specification for details).

For convenience, some environment entries may also be specified as attributes.

Table 5.1. Entries that can be specified as attributes

Entry name Attribute

java.naming.factory.initial initialContextFactory

java.naming.provider.url providerUrl

java.naming.security.principal securityPrincipal

java.naming.security.credentials securityCredentials

Entry java.naming.factory.initial has a preset default of
com.sun.jndi.ldap.LdapCtxFactory.

5.4.2.2. <ldap:query>

The <ldap:query> queries the LDAP server for a specific entry or a list of entries. The usage
pattern is:

<ldap:query ldapContext="${ctx}"
dn="ou=People,dc=my-domain,dc=com"
filter="(uid=lipp)" attributes="cn, uid,gecos"/>

The attribute ldapContext must be specified and must refer to a previously created context. At-
tribute dn must also be given. It specifies the entry or the base for the directory search. Attribute
filter is optional. If not specified, dn must refer to an entry in the directory, else dn is used as
base for a search with filter. It attributes is specified, only the comma separated list of at-
tributes of the entry or entries is retrieved from the server, thus saving bandwidth and CPU cycles.

The data retrieved is output by the tag as an XML structure:

<queryResult dn="ou=People,dc=my-domain,dc=com"
filter="(uid=lipp)">

<entry dn="uid=lipp,ou=People,dc=my-domain,dc=com">
<attribute name="gecos">Michael N. Lipp</attribute>
<attribute name="uid">lipp</attribute>
<attribute name="cn">Michael N. Lipp</attribute>

</entry>
</queryResult>

This structure may be output directly or further processes by Jelly. Here is a complete application
declaration that converts the retrieved data to a user record.

<Application Id="LDAPQuery">
<Description>Query fixed entry</Description>
<FormalParameters>
<FormalParameter Id="result" Mode="OUT">

LDAP tag library

49

<DataType>
<SchemaType/>
</DataType>
</FormalParameter>
</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.JellyTool">
<vx:Property Name="Script">
<j:jelly trim="false" xmlns:j="jelly:core" xmlns:x="jelly:xml"
xmlns:html="jelly:html" xmlns:log="jelly:log"
xmlns:ldap="jelly:de.danet.an.util.jellytags.ldap.Library">
<!-- You will probably not put this in the process description.
Use Jelly functions to obtain the password from e.g. JNDI
environment, a properties file or whatever password store suits
your application. -->
<j:set var="credential" value="********"/>

<!-- ldap:setInitialContext supports attributes
"initialContextFactory", "providerUrl", "securityPrincipal"
and "securityCredentials" as short-cuts.
More entries may be set in the environment used by using nested
"environmentEntry" tags, as shown. -->
<ldap:setInitialContext var="ctx" providerUrl="ldap://localhost:389"
securityPrincipal="cn=Manager,dc=my-domain,dc=com">
<ldap:environmentEntry name="java.naming.security.credentials"
value="${credential}"/>

</ldap:setInitialContext>

<!-- Execute the query and save the result document -->
<x:parse var="response">
<ldap:query ldapContext="${ctx}" dn="ou=People,dc=my-domain,dc=com"
filter="(uid=lipp)" attributes="cn, uid,gecos"/>

</x:parse>

<!-- Output the user record -->
<x:set var="userId" select="$response/queryResult/entry/@dn"
single="true" asString="true"/>
<x:set var="userName"
select="$response/queryResult/entry/attribute[@name='cn']"
single="true" asString="true"/>
<user id="${userId}" name="${userName}"/>
</j:jelly>
</vx:Property>
</vx:ToolAgent>
</ExtendedAttribute>
</ExtendedAttributes>
</Application>

Of course, part of the query criteria (dn or the value in filter) will usually be passed to the ap-
plication as a parameter.

5.4.2.3. <ldap:insert>

The tag <ldap:insert> inserts new entries in the directory. The usage pattern is:

<ldap:insert ldapContext="${ctx}">
<entry dn="uid=test,ou=People,dc=my-domain,dc=com">
<attribute name="objectClass">top</attribute>
<attribute name="objectClass">account</attribute>
<attribute name="description">Just a test account</attribute>

</entry>
</ldap:insert>

The tag itself has only one attribute ldapContext that references a previously obtained LDAP
connection. The entries to be added to the directory are nested within the tag. They are formatted ex-
actly as the results of a query. This facilitates deriving new entries from existing entries.

LDAP tag library

50

5.4.2.4. <ldap:update>

The tag <ldap:update> updates existing entries in the directory. The usage pattern is:

<ldap:update ldapContext="${ctx}" operation="replace">
<entry dn="uid=test,ou=People,dc=my-domain,dc=com"
operation="replace">
<attribute name="description" operation="replace">
Just an updated test account
</attribute>
<attribute name="organizationName">Testing</attribute>

</entry>
</ldap:update>

The tag itself has only one mandatory attribute ldapContext that references a previously ob-
tained LDAP connection. An optional attribute operation may be specified at the
ldap:update tag or for the entry or for an attribute. It controls whether the attribute is re-
placed ("replace"), added ("add") or removed ("remove"). If no operation is specified for a
tag, the operation specified for the enclosing tag is performed. ldap:update has a default opera-
tion of "replace".

5.4.2.5. <ldap:delete>

The tag <ldap:delet> deletes existing entries in the directory. The usage pattern is:

<ldap:delete ldapContext="${ctx}">
<entry dn="uid=test,ou=People,dc=my-domain,dc=com"/>

</ldap:delete>

The tag itself has only one mandatory attribute ldapContext that references a previously ob-
tained LDAP connection. The entries to be deleted are specified as nested entry tags. Any at-
tribute tags nested within an entry tag are simply ignored. This allows using a query result dir-
ectly as selection of entries to be deleted.

5.5. Mail tool
The mail tool builds an interface to the javax mail facility and thus can be used to send text mes-
sages to any recipient. Formal parameters are interpreted in the following order of declaration:

1. address(es) of recipient(s)

2. subject

3. message

4. address of sender

Furthermore, in case that no actual valid sender can be given as formal parameter (e.g. the data field
is not set), a default sender can be declared via a property of the tool agent.

Example:

...
<Application Id="MailTool2">
<FormalParameters>
<FormalParameter Id="recipient" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="subject" Mode="IN">
<DataType>

Mail tool

51

<BasicType Type="STRING"/>
</DataType>

</FormalParameter>
<FormalParameter Id="message" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="sender" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="status" Mode="OUT">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.MailTool2"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1">
<vx:Property Name="DefaultSender">test@WfMOpen.com</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>
...

The mail provider to be used is determined by a JNDI lookup using the logical name
java:comp/env/toolagents/mailtool/Mail in the context of the InvocationHelp-
erEJB (see Section 3.5.3, “Accessing JNDI” [31]). As distributed, WfMOpen binds this logical
name in the JBoss specific deployment descriptor to the global JNDI entry
java:/WfMOpenMail. Make sure that this entry exists. For JBoss, we recommend to create a
copy of $JBOSS_HOME/server/configuration/deploy/mail-service.xml (e.g. as
wfmopen-mail-service.xml), set the entry JndiName within the file to
java:/WfMOpenMail, and adjust the entry mailhost.smtp.host (minimal configuration).

5.6. XSLT tool
This tool can be used to transform xml content with an XSLT processor. The transformation is done
using the JAXP 1.1 API, which introduces an abstract layer for the transformation process. The
stylesheet to be used in the transformation may either be given by a URL or an inline definition us-
ing the property XSLT. The two cases are distinguished by checking whether the XSLT property
defines a valid URL or not. If no XSLT property is given, the output document is the same as the in-
put document (this allows the tools to be used as a merger or value extractor, see below). The
stylesheet must produce a well formed xml-document for the tool to work correctly.

The first formal parameter containing xml content defines the content to be transformed by the tool.
Additional input parameters are used to set stylesheet parameters. The result of the transformation is
assigned to all formal output parameters, applying an additional mapping if defined using the Map-
pings property.

Example:

...
<Application Id="XSLT">
<Description>
</Description>
<FormalParameters>
<FormalParameter Id="inlist" Mode="IN">
<DataType>
<SchemaType/>

XSLT tool

52

</DataType>
</FormalParameter>
<FormalParameter Id="result" Mode="OUT">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.XSLTTool"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1">
<vx:Property Name="XSLT" xmlns="">
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:param name="city" select="'Darmstadt'"/>
<xsl:template match="row">
<record>
<painter><xsl:value-of select="@painter"/></painter>
<title><xsl:value-of select="@title"/></title>
<year><xsl:value-of select="@year"/></year>
<size><xsl:value-of select="@size"/></size>
<city><xsl:value-of select="$city"/></city>

</record>
</xsl:template>
<xsl:template match="table">
<table>
<xsl:apply-templates select="row"/>

</table>
</xsl:template>
</xsl:stylesheet>

</vx:Property>
<vx:Property Name="Mappings">
<vx:OutputMappings>
<vx:Parameter Name="result" Select="/table/record[1]/painter"/>

</vx:OutputMappings>
</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>
...

As can be seen in the example, an XPath expression can be defined for each output parameter. The
XPath expression is applied to the transformation result, yielding a derived result that is then as-
signed to the output parameter referenced in the output mappings section. The output parameters
may be of SchemaType or BasicType STRING, INTEGER, FLOAT, DATETIME or BOOLEAN.
For types datetime, float and boolean, the XPath expression must evaluate to a string that matches
the format of the corresponding XSD type. Parameters of type integer are evaluated by applying the
XPath number function to the result of the selection and using the integer part of the returned
value.

As an additonal feature, the tool supports merging XML content from different input parameters be-
fore the transformation is applied.

If the first formal parameter is of type STRING, its value defines the tag value for a root element of
the intermediate content to be created. Any additional formal input parameters of type Schema-
Type will be added under this new root element in order of appearance.

For example, calling the tool with a first input parameter "Root" and two additional input parameters
<doc1><value1>...</value1></doc1> and
<doc2><value2>...</value2></doc2> results in an intermediate document
<Root><doc1><value1>...</value1></doc1><doc2><value2>...</value2></
doc2></Root> to which the transformation is applied.

Generic SOAP tool

53

5.7. Generic SOAP tool
This tool can be used to execute arbitrary SOAP requests. It must be declared with a formal IN
parameter of SchemaType named body. The XML passed into this parameter will be literally
copied into the <soapenv:Body> section of the SOAP request. Another formal IN parameter of
SchemaType named header may optionally be declared and can be used to add content to the
<soapenv:Header> section of the SOAP request. Another formal IN parameter of type
STRING named httpHeaders may optionally be declared and can be used to specify additional
HTTP headers for the request. The string must consist of "key: value" pairs separated by newline
characters. Note that the value of the special HTTP header "SOAPAction" will automatically be
surrounded by double quotes, so don't use double quotes when specifying it.

Upon tool invocation, the request will be sent to the endpoint specified as a property. Output para-
meters may be specified to receive the complete result of the invocation (i.e. a tree with root node
<soapenv:Envelope>) or parts of the result. The mapping of result values to output parameters
is configured as described for the XSLT tool (see Section 5.6, “XSLT tool” [52]).

Example:

...
<Application Id="stockQuote">
<Description>
</Description>
<FormalParameters>
<FormalParameter Id="body" Mode="IN">
<DataType>

<SchemaType/>
</DataType>

</FormalParameter>
<FormalParameter Id="result" Mode="OUT">
<DataType>

<SchemaType/>
</DataType>

</FormalParameter>
</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.soap.GenericSoapClient">
<vx:Property Name="Endpoint">
http://localhost:8181/soapsrvdemo/StockQuoteService.jws

</vx:Property>
<vx:Property Name="Mappings">
<vx:OutputMappings>
<vx:Namespaces>
<vx:Namespace Prefix="soapenv"
Uri="http://schemas.xmlsoap.org/soap/envelope/"/>

</vx:Namespaces>
<vx:Parameter Name="result" Select="/soapenv:Envelope/*"/>

</vx:OutputMappings>
</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>
...

If you are behind a firewall and want to access web services outside your intranet, it may be neces-
sary to tell the application server (i.e. the virtual machine running it) about the proxy for your http
connection. For JBoss the information can be provided as follows (see "J2SDK Networking Proper-
ties" [http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html]): JAVA_OPTS="... -
Dhttp.proxyHost=<PROXY HOST> -Dhttp.proxyPort=<PORT> -Dht-
tp.nonProxyHosts=localhost|*.your.domain" ./run.sh

If calling the web service results in a SOAPException that indicates that the server is unavailable,
the tool raises a CannotExecuteException with a java.rmi.ConnectException as its

Generic SOAP tool

54

http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html
http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html
http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html

cause. This may be mapped to a process level exception as described in Section 3.5.4, “Exception
handling” [31].

5.8. RPC SOAP tool
This tool can be used to execute a method of a WSDL description that defines an RPC style SOAP
service. The WSDL description may either be given by a URL or an inline definition via the prop-
erty WSDL. The discrimination between the two cases is done by checking whether the WSDL prop-
erty defines a valid URL or not. Formal parameters to the tool invocation define the method name
(first parameter) and the appropriate parameters to the method call.

Example:

...
<Application Id="stockQuote">
<Description>
</Description>
<FormalParameters>
<FormalParameter Id="symbol" Mode="IN">
<DataType>
<BasicType Type="STRING"/>
</DataType>
</FormalParameter>
<FormalParameter Id="Result" Mode="OUT">
<DataType>
<BasicType Type="FLOAT"/>
</DataType>
</FormalParameter>
</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.soapclient.SOAPClient"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1">
<vx:Property Name="WSDL">
<wsdl:definitions

targetNamespace="http://brian.an.danet.de:8080/soapsrvdemo/StockQuoteService.jws"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://brian.an.danet.de:8080/soapsrvdemo/StockQuoteService.jws"
xmlns:intf="http://brian.an.danet.de:8080/soapsrvdemo/StockQuoteService.jws"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:message name="getQuoteResponse">
<wsdl:part name="getQuoteReturn" type="xsd:float"/>

</wsdl:message>
<wsdl:message name="getQuoteRequest">
<wsdl:part name="symbol" type="xsd:string"/>

</wsdl:message>
<wsdl:portType name="StockQuoteService">
<wsdl:operation name="getQuote" parameterOrder="symbol">

<wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
<wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="StockQuoteServiceSoapBinding"
type="impl:StockQuoteService">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getQuote">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getQuoteRequest">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>
</wsdl:input>

RPC SOAP tool

55

<wsdl:output name="getQuoteResponse">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://brian.an.danet.de:8080/soapsrvdemo/StockQuoteService.jws"
use="encoded"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="StockQuoteServiceService">
<wsdl:port binding="impl:StockQuoteServiceSoapBinding"
name="StockQuoteService">
<wsdlsoap:address
location="http://localhost:8080/soapsrvdemo/StockQuoteService.jws"/>

</wsdl:port>
</wsdl:service>
</wsdl:definitions>
</vx:Property>
<vx:Property Name="Method">getQuote</vx:Property>
</vx:ToolAgent>
</ExtendedAttribute>
</ExtendedAttributes>
</Application>
...

The hints about firewalls described in Section 5.7, “Generic SOAP tool” [54] apply to this tool as
well.

When calling the web service results in a java.rmi.RemoteException, the tool raises a
CannotExecuteException with the RemoteException as its cause. In addition, the tool
establishes an exception mapping of java.rmi.RemoteException to a process level excep-
tion "RemoteException" (see Section 3.5.4, “Exception handling” [31]). This reflects the as-
sumption that the unavailability of the web service is a condition that is to be handled at the process
level and cannot be worked around by simply repeating the invocation (as is usually done with Re-
moteExceptions).

5.9. Wait tool
Sometimes, further processing in a workflow process must be delayed until some date is reached.
This can be achieved with the WaitTool.

In its simplest form, the wait tool is defined as:

...
<Application Id="SimpleWait">
<Description>Waits for a timer to expire</Description>
<FormalParameters>
<FormalParameter Id="waitUntil" Mode="IN">
<DataType>
<BasicType Type="DATETIME"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.timing.WaitTool"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1"/>

</ExtendedAttribute>
</ExtendedAttributes>

</Application>
...

When used in this way, the tool will simply wait until the given date/time. Note that waiting is not
implemented by calling something like "sleep" for the execution thread. Rather a persistent timer is
created. So it is safe to specify a date next week, next month or even in years5. A running wait tool

Wait tool

56

5Consider a process contolling the complete lifetime cycle of a document. After all the initial creating, reviewing, revising
and using the document, it may be necessary to archive the document for another 5 years before deleting it.

will continue to run even after server restarts.

As an alternative, the tool may also be invoked with a single parameter of type INTEGER or
DOUBLE instead of DATETIME. In this case, it waits for the specified number of seconds to pass
after its invocation.

In some workflows, you need the possibility to end the waiting prematurely. For these cases another
version of the tool is provided that actually consists of three tools. The first tool creates a timer, re-
turning a timer id. The second tool waits until the timer has expired (i.e. the date/time specified on
creation has been reached). And the third tool may optionally be used to terminate the timer prema-
turely. In order to be able to distinguish regular and premature completion easily, the wait tool is
given an OUT parameter that is set to EXPIRED (regular termination) or CANCELED (premature ter-
mination).

Example:

...
<Application Id="TimerCreator">
<Description>Creates a timer</Description>
<FormalParameters>
<FormalParameter Id="timerId" Mode="OUT">
<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</FormalParameter>
<FormalParameter Id="waitUntil" Mode="IN">
<DataType>
<BasicType Type="DATETIME"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.timing.TimerCreator"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1"/>

</ExtendedAttribute>
</ExtendedAttributes>

</Application>
<Application Id="TimerCanceler">
<Description>Cancels a timer</Description>
<FormalParameters>
<FormalParameter Id="timerId" Mode="IN">
<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.timing.TimerCanceler"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1"/>

</ExtendedAttribute>
</ExtendedAttributes>

</Application>
<Application Id="Timing">
<Description>Waits for a timer to expire</Description>
<FormalParameters>
<FormalParameter Id="timerId" Mode="IN">
<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</FormalParameter>
<FormalParameter Id="status" Mode="OUT">
<DataType>
<BasicType Type="STRING"/>

</DataType>

Wait tool

57

</FormalParameter>
</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.timing.WaitTool"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1"/>

</ExtendedAttribute>
</ExtendedAttributes>

</Application>
...

5.10. MBean invocation tool
This tool supports the invocation of an MBean operation.

The tool is declared as:

...
<Application Id="SimpleInvoker">
<Description>Simple MBean invoker test</Description>
<FormalParameters>
<FormalParameter Id="result" Mode="OUT">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.MBeanInvoker">
<vx:Property Name="ObjectName">jboss:service=JNDIView</vx:Property>
<vx:Property Name="Operation">listXML</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>
...

The tool looks up the MBean set in property ObjectName and invokes its operation Operation.

If the first declared formal parameter has mode OUT or INOUT the result of the operation invocation
will be assigned to the actual parameter. The parameter's type must match the return type of the
MBean's operation.

The second and subsequent parameters must have mode IN or INOUT. All parameters with mode
IN or INOUT (i.e. including the first) are passed to the invoked operation. The parameter types are
used to build the signature used for operation lookup.

5.11. EJB invocation tool
This tool supports the invocation of an EJB operation.

The tool is declared as:

...
<Application Id="EJBTool">

<FormalParameters>
<FormalParameter Id="JndiName" Mode="IN">

<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

MBean invocation tool

58

6"ChaBAcc" for short. We don't know how this sounds in other languages, but Germans usually tend to grin at the sound of
this acronym for no specific reason.

<FormalParameter Id="HomeClass" Mode="IN">
<DataType>

<BasicType Type="STRING"/>
</DataType>

</FormalParameter>
<FormalParameter Id="Method" Mode="IN">

<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="Num1" Mode="IN">

<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</FormalParameter>
<FormalParameter Id="Num2" Mode="IN">

<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</FormalParameter>
<FormalParameter Id="AddResult" Mode="OUT">

<DataType>
<BasicType Type="INTEGER"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>

<ExtendedAttribute Name="Implementation">
<vx:ToolAgent
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1"
Class="de.danet.an.workflow.tools.EJBTool"/>

</ExtendedAttribute>
</ExtendedAttributes>

</Application>
...

The tool looks up the EJB with the JNDI name JndiName and the home interface HomeClass
and invokes the operation Method.

If the last declared formal parameter has mode OUT or INOUT the result of the operation invocation
will be assigned to the actual parameter. The parameter's type must match the return type of the
MBean's operation.

The fourth and subsequent parameters must have mode IN or INOUT. All parameters with mode IN
or INOUT (i.e. including the first three) are passed to the invoked operation. The parameter types
are used to build the signature used for operation lookup.

5.12. Channel based access
Channel based access6 provides channels for message oriented communication between a process
instance and a client or between a process instance and its sub-processes.

Channels are named and associated with a process instance. They need not be declared. Clients can
obtain access to a channel from the WorkflowService (see getChan-
nel(de.danet.an.workflow.omgcore.WfProcess, java.lang.String) [246]). The channel may then be
used to send messages to a receiver tool or receive messages from a sender tool (see below). Mes-
sages are simply passed from source to destination; there is no verification that a message from a
client to a process (i.e. to a receiver tool) is followed by a message from the process (i.e. from a
sender tool) to the client or vice versa. The communication may be initiated by any party: the pro-
cess may create (or know about) a client and intially send a message to it, or a client may create or
lookup a process that has started (or will start) a receiver tool and send a message to it (see Sec-

Channel based access

59

7This may also be used if the process is not a subflow at all, as a process without a requesting process is considered top of the
chain.

tion 5.12.3, “Generic HTTP Access” [61] for a sample usage).

5.12.1. Receiver tool
The receiver tool receives messages from a channel. It takes an IN parameter of type STRING that
specifies the channel to listen on, and an arbitrary number of additional OUT parameters that receive
the data sent on the channel. The formal parameter names must match the keys used in the map
passed to the channel by the client (see sendMessage(java.util.Map) [174]).

Normally, the receiver receives messages sent to the process it was started in. Sometimes, however,
it is useful to structure a workflow process by using subflows. If the activities separated into the
subflow include the usage of a receiver tool, the receiver tool listens on the wrong process, as the
client does not (and should not) know about the separation in main process and subflow and keeps
sending the messages to the main process.

The receiver tool therefore has a property "ListenerIndex" that can be used to make the receiv-
er listen for messages sent to one of the requesting processes of the current process (i.e. processes
the current process is a subflow of). If set, the property must be an integer. 0 (zero) is the top re-
quester, i.e. the process at the end of the chain of requesting processes7. A positive integer specifies
a process relative to the current process (e.g. "1" is the requester, "2" is the requester of the re-
quester) while a negative integer specifies a subflow relative to the top process.

Example:

...
<Application Id="TopReceiverTool">
<Description>Receive data from a channel accessor</Description>
<FormalParameters>
<FormalParameter Id="channel" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="message" Mode="OUT">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.chabacc.Receiver"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1">
<vx:Property Name="ListenerIndex">0</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>

...

5.12.2. Sender tool
The sender tools sends messages on a channel. It takes an IN parameter of type STRING that spe-
cifies the channel to send to, and an arbitrary number of additional IN parameters used to pass the
data to be sent to the channel. The formal parameter names are used as keys in the map returned to
the client (see receiveMessage() [174]). Note that actual parameters are sent on the channel as passed
to the sender tool. This implies that parameters of type SchemaType may be sent as SAX event
buffer, W3C DOM or JDOM, depending on the value of attribute XMLParameterMode in the
definition of the sender tool (see Section 4.2.5.1, “Extentions of Application Declaration” [35]).

Like the receiver tool, the sender tool may be configured to send messages from a requesting pro-

Receiver tool

60

8We use an HTML browser as example here in order to make the explanation easy to follow. Of course, this mechanism be-
comes more thrilling if you imagine a voice browser instead of the HTML browser and VoiceXML instead of HTML. We
have used the generic servlet in such a way and built some nice workflow based voice applications with WfMOpen.

cess instead of the process the tool was started in. This is done by setting the property "Originat-
orIndex". The value is interpreted in the same way as described for the receiver tool above.

An additional property of the sender tool specifies whether messages sent should also be delivered
to receiver tools listening on the channel used (by default, they are only delivered to clients). This
may e.g. be used at the end of a process to terminate a receiver tool running "in parallel" (i.e. it has
waited for some kind of optional intervention from a client during processing and is now sent some
dummy message to complete the process properly). Together with the "ListenerIndex" and
"OriginatorIndex" properties, this may also be used for communication between processes,
e.g. a subflow informing its requester about its state.

Example:

...
<Application Id="TopSenderTool">
<Description>Send a message to a channel accessor</Description>
<FormalParameters>
<FormalParameter Id="channel" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="message" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.chabacc.Sender"
xmlns:vx="http://www.an.danet.de/2009/XPDL-Extensions1.1">
<vx:Property Name="LocalDelivery">True</vx:Property>
<vx:Property Name="OriginatorIndex">0</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>

...

5.12.3. Generic HTTP Access
To simplify the HTTP access to a longterm workflow process, as it may be useful for designing dia-
log driven applications, an "out-of-the-box" solution is provided by a generic HTTP servlet.

For an example, let us assume we'd like to design an application that enables users to subscribe and
unsubscribe a service and to modify the service parameters. The user interface should be provided
by HTML pages and the service will be described by a workflow process definition8.

The components we need are:

• An entry Web page for subscribing to a new service or requesting an existing service.

• A process definition within the workflow engine, describing the actions of the service and provid-
ing HTML pages for user actions (e.g. modification of service parameters).

• A (user based) connection between the workflow engine (i.e. a service) and the client HTML
pages (i.e. the browser).

Generic HTTP Access

61

9 So you have to make sure, that the SenderTool and the ReceiverTool use a channel named initiator as well.

Subscribing to a new service is easy to implement, since it may simply be done by starting a new
workflow process. But once the process is running, arrangements have to be made to make sure that
the process performs its service duties and concurrently listens for service "update" events. The lat-
ter task can be performed using the Receiver Tool (see Section 5.12.1, “Receiver tool” [60]) and the
Sender Tool (see Section 5.12.2, “Sender tool” [60]) within a concurrently running activity.

To simplify the (channel based) interaction with workflow processes via HTTP, a servlet is provided
that

• starts a new process — if needed — and provides a channel to it or

• opens a channel to an already running process and

• holds the channel within the session for further use and forwards responses from the process to
the client.

By using this servlet, HTTP based client applications (e.g. using HTML pages) are very easy to
design. The current page sends a request to the servlet and the successor page (code) is provided by
the proper workflow activity through the servlet. No further application code is needed.

The servlet described above serves as an interface between the client application and a workflow
process. The communication with the process uses a message channel named "initiator") 9.

To identify the process to connect with, some key information has to be provided within the request.
The following request parameters are treated as key values:

• WFM_packageID and WFM_processID: package ID and process ID of the associated process

• WFM_dataItemName and WFM_dataItemValue: name and value of data item (data field)
that should be used as a search criteria for a process of the specified type (i.e. with the given
package and process ID).

All remaining request parameters are considered to be application data and are used to initialize the
process' data or send to the receiver tool.

Variations:

1. Only WFM_packageID and WFM_processID (beside application data) are provided.

A new process of the specified type is created and initialized with the application data. A new
message channel is built up to this process. The process manager name and process key are
stored in the session context for later use (see variation 3 [63]).

If no process description with the given package and process id exists, status code 400 will be
returned.

2. All above-mentioned WFM* parameters are provided. A lookup is performed for the process
matching the given data item criteria. If none is found, a new process of the specified type is cre-
ated and initialized with the given data item and the provided application data. The process man-
ager name and process key are stored in the session context for later use (see variation 3 [63]). If
no process description with the given package and process id exists, status code 400 will be re-
turned.

If a matching process is found, this process is used. The provided application data is sent to the
process via a built-up message channel.

If no message channel can be opened because the process is closed, status code 410 will be re-
turned.

Generic HTTP Access

62

If more than one matching process is found, status code 409 will be returned.

3. WFM_packageID and WFM_processID are not provided. It is assumed that the process should
be used which has already been referenced within the session (see variation 1 [62] or 2 [62]).
Thus, the process manager name and process key that have been stored in the session context are
used to build the connection to the process. The provided application data is sent to the process
via the built-up message channel.

If no message channel can be opened because the process ist either closed or removed, status
code 410 will be returned.

If no process information is stored in the session context, status code 400 will be returned.

4. An additional parameter WFM_waitForResponse is provided with a value of "false" (not equal
to "true", to be precise). In this case, the servlet will not wait for a response from the process. It
will only send data to a process or create a new process as described above and then return a re-
sponse with no content.

The message received on the channel from the process (sent by the process using the sender tool, see
Section 5.12.2, “Sender tool” [60]) may have one or more entries. If it has only a single entry, this
entry is considered to be the data to be sent back to the HTTP client, independant of the entry's
name. If the message has more than one entry, there must be one entry with key data containing
the data to be sent back or otherwise, status 500 will be returned to the client. The data (i.e. the cor-
responding formal parameter of the SenderTool) may be of type STRING or SchemaType. In the
latter case, the XML data is transformed to its string representation by the generic HTTP servlet be-
fore it is sent to the HTTP client. Note that the data must be provided as a SAX buffer, i.e. the
sender tool defined for sending the response to the servlet must have the attribute XMLParamet-
erMode set to USE_SAX (see Section 4.2.5.1, “Extentions of Application Declaration” [35]).

Additional entries supported in a message received by the generic HTTP servlet are:

doctype-system (STRING) Specifies the system identifier to be used in the document type
declaration of the document resulting from the conversion of
response data passed as XML to its string representation.

doctype-public (STRING) Specifies the public identifier to be used in the document type
declaration of the document resulting from the conversion of
response data passed as XML to its string representation.

invalidateSession
(BOOLEAN)

When set to true, the session associated with the request is in-
validated. This may be used to dissociate a client from its as-
sociated process (if they are linked using information from the
session context as described in 3 [63]), thus forcing the cre-
ation of a new process on the next request.

mimeType (STRING) When set, overrides automatic derivation of the response's
mime type from the data to be sent. The default is to send any
data of type SchemaType as text/xml. If the data is of
type STRING and the string starts with a "<!DOCTYPE
HTML PUBLIC \"-//W3C//DTD HTML" or
"<!DOCTYPE HTML PUBLIC \"-//IETF//DTD
HTML" declaration, it is sent as text/xml. Otherwise the
mime type ist set to application/data.

The generic HTTP servlet will accept POST requests only, as all requests lead to a modification of
the server side state. There is, however, one exception to this rule.

In order to get started with a process based Web application, you must present the user an initial
page that allows him to click on a link to create a new process or to fill in and submit some informa-

Generic HTTP Access

63

10Admittedly, this is less efficient than a static HTML page, but you need not set up a server for static HTML pages. It is a bit
like a servlet serving static files: obviously Web servers like Apache can do it faster, but in many cases you want to avoid the
effort of installing Apache or adding to its configuration only to provide a few files as part of your J2EE application.

tion that identifies an existing process. Now, where does this start page come from? Of course, it can
simply be created as static HTML and provided by any Web server (and for performance reasons,
this will eventually be the solution in many cases). However, even if only as proof of concept, it
should be possible to specify a complete Web application — including the start page — using XP-
DL.

As initial URLs (i.e. URLs that can be typed into a browser) will always perform a GET request, the
generic HTTP servlet must support such a request for generating the start page. As this is a "get star-
ted" request, it will always create a new process, whose single purpose is to send back the content of
the start page and then complete 10 (although there may be cases that allow to continue the lifespan
of this process). To avoid complicated looking URLs, the generic HTTP servlet uses extra path in-
formation instead of parameters to specify the type (i.e. package id and process id) of the process to
be created. The first segment in the extra path information denotes the package id, the second the
process id. If the process id is omitted, it defaults to boot, if the package id is omitted also, it de-
faults to chabacc_http_plain. Both defaults may be altered by specifying the servlet init para-
meters packagePathSegmentDefault and processPathSegmentDefault respectively.

Some examples of using the generic HTTP servlet are included in the demo applications (see Ap-
pendix C, The demo applications [337]).

Generic HTTP Access

64

Chapter 6. The sample resource
assignment service

For assigning resources to activities, a workflow component relies on a resource assignment facility
as described in Section 3.1, “Component structure” [23] and Section 3.4, “Resource assignment
SPI” [30]. Such a facility is not part of the core workflow functionality.

As we felt our workflow component to be incomplete without at least a simple resource assignment
service, we have included an implementation of such a service in the workflow component.

6.1. The sample assignment service
The sample assignment service implements the resource assignment API as specified by package
de.danet.an.workflow.spis.ras [269]. The factory class and its configuration parameters are described
in de.danet.an.workflow.assignment.StandardResourceAssignmentServiceFactory [327]. See the
classes description for further information not covered in the current section.

The sample resource assignement service is bundled in the library
de.danet.an.workflow.defaultras.jar. Besides the required classes, this jar contains
the file META-
INF/ser-
vices/
de.danet.an.workflow.spis.ras.ResourceAssignmentServiceFactory that
defines the class StandardResourceAssignmentServiceFactory as an implementation
of the resource assignment service. Thus the sample resource assignment service is found as de-
scribed in newInstance() [280] if the jar is included in the classpath of the EAR that comprises the ap-
plication. Usually, this is done by adding the jar as Java module to application.xml.

6.2. Provided functionality
The sample resource assignment service uses the participant type and participant name from the pro-
cess definition to select a resource from a resource management service (RMS, see below). If the
participant type is HUMAN, it looks for a user with the given name, if it is RESOURCE_SET, it looks
for a group with the given name, and it it is ROLE it looks for a role with the given name.

For selecting the resource from the RMS, the sample RAS relies on the RMS to support queries of
the form "M:user_name", "G:group_name" and "R:role_name" (see below).

As a special case, if the participant type is HUMAN and the extended attribute "resource-se-
lection" exists and its value is "!:currentUser", then the activity is assigned to the user that
has created the process. The participant definition thus looks like:

<Participant Id="currentUser" Name="Current User">
<ParticipantType Type="HUMAN" />
<ExtendedAttributes>
<ExtendedAttribute Name="resource-selection"

Value="!:currentUser"/>
</ExtendedAttributes>

</Participant>

As the syntax "!:currentUser" suggests, there had been plans to specify sophisticated selection
rules here. Currently, we think that any usage of the workflow engine that needs more sophisticated
assignment than selecting a person, a group or the process creator will need its own implementation
of a RAS anyway.

65

6.3. The underlying resource management
service

Thinking about resource assignment, it soon becomes obvious that a resource assignment service
must know about the resources it can assign and thus must include or be based on a resource man-
agement service.

Resource management, however, is not a trivial task. As such, we cannot provide a useful resource
management, even as a sample implementation, as part of the workflow component. In order to be
nevertheless able to provide a sample resource assignment service, we have defined a formal inter-
face to a resource management service in package de.danet.an.workflow.spis.rms [281]. Note that
only the sample resource assignment service depends on this interface, not the workflow engine. If
you decide to replace the sample resource assignment service with your own implementation, you
no longer have to provide a resource management service as defined by the resource management
service interface (of course, you may use the interface in your implementation of a resource assign-
ment service if it suits your needs).

A resource management service must implement a resource management factory and a resource
management service as defined in Section A.5.9, “Class ResourceManagementServiceFactory” [294]
and Section A.5.8, “Interface ResourceManagementService” [291]. An implementation ofRe-
sourceManagementFactory may require additional configuration properties to adapt the ser-
vice instances that it creates to the specific environment. Usually, these properties are retrieved from
JNDI environment entries or from a Java properties file.

The WfMOpen implementation guarantees that the resource management service factory is only
used in the context of the WorkflowEngineEJB. Therefore, if you use JNDI environment entries
to configure your factory, it is sufficient to add those entries to the WorkflowEngineEJB. Note
that the guarantee to use the resource management service factory in this context only is implement-
ation specific. Therefore the general SPI description leaves the issue of which EJBs require the
entries deliberately open.

As has been described above, any RMS that is to be used with the sample resource assignment ser-
vice must support the queries "M:user_name", "G:group_name" and "R:role_name" as para-
meter of the selectResources method (see selectResources(java.lang.Object) [293]).

6.4. Provided RMS implementations
The WfMOpen distribution provides several implementations of a resource management service.
These are described in the following sections.

6.4.1. Database based RMS
Unless a standards based approach is used (see below) user information is most likely kept in an
RDBMS. WfMOpen therefore includes a generic implementation of a database based RMS that can
be adapted to a wide range of database schemas.

The detailed description of this service and its configuration parameters can be found in
de.danet.an.workflow.rmsimpls.dbrms [329].

The factory and service classes are bundled in the de.danet.an.workflow.dbrms.jar
which can be found in $DIST/lib/wfcore/. Besides the required classes, this jar contains the
file META-
INF/ser-
vices/
de.danet.an.workflow.spis.rms.ResourceManagementServiceFactory that
defines the class de.danet.an.workflow.rmsimpls.dbrms.DatabaseRmsFactory as
an implementation of the resource management service. Thus the database based resource manage-
ment service is found as described in newInstance() [295] if the jar is included in the classpath of the
EAR that comprises the application. Usually, this is done by adding the jar as Java module to ap-
plication.xml.

Provided RMS implementations

66

The service must be configured by specifying the statements for the various resource queries. This is
decribed in detail in de.danet.an.workflow.rmsimpls.dbrms.DatabaseRmsFactory [329].

6.4.2. EIS based RMSes
In general, information about resources is often kept in Enterprise Information Systems (EIS). The
preferred approach for accessing this kind of systems in J2EE is by using JCA. WfMOpen therefore
provides a resource management system implementation that relies on a JCA datasource to obtain
information about resources.

6.4.2.1. The generic EIS RMS front-end

The implementation uses a generic RMS implemantation that must be combined with a specific re-
source adapter. The description of this EIS RMS service and its configuration parameters can be
found in de.danet.an.workflow.rmsimpls.eisrms [331].

The factory and service classes are bundled in the de.danet.an.workflow.eisrms.jar
which can be found in $DIST/lib/wfcore/. Besides the required classes, this jar contains the
file META-
INF/ser-
vices/
de.danet.an.workflow.spis.rms.ResourceManagementServiceFactory that
defines the class de.danet.an.workflow.rmsimpls.eisrms.EisRmsFactory as an
implementation of the resource management service. Thus the EIS based resource management ser-
vice is found as described in newInstance() [295] if the jar is included in the classpath of the EAR that
comprises the application. Usually, this is done by adding the jar as Java module to applica-
tion.xml.

The EIS RMS implements only the "front-end" of the resource management system. It relies on a re-
source adapter that implements a specific client API that is used by the EIS RMS to provide its ser-
vices. While it might have been possible to use the standard CCI (Common Client Interface) as API
of the resource adapter, we found that this would have caused considerable overhead without
providing a significant benefit. We have therefore defined a specific application client interface
(ACI) in de.danet.an.workflow.rmsimpls.eisrms.aci [332].

6.4.2.2. Resource adapter implementations

The following sections describe the resource adapter implementation for the EIS RMS that are dis-
tributed with WfMOpen. Each of these adapters can be found as
de.danet.an.workflow.*ra.rar in the directory $DIST/lib/wfcore/ of the distribu-
tion.

The resource adapters follow standard packaging rules and can be deployed in any JCA compliant
application server.

6.4.2.2.1. Properties based resource adapter

This resource adapter obtains its information from three properties files. The first is used to describe
users. Entries have the format "user=password". The password is without significance for the
adapter. The format has been chosen to mach the requirements of the file based authentication mod-
ule of JBoss. This allows the file to be used for both authentication and resource definition.

The second and third file describe roles and groups respectively. The format for entries is
"user=role1, role2, ..." (or "user=group1, group2, ..."). Again, the file describing the
roles can also be used for role management in the file based authentication module of JBoss.

The files are made known to the resource adapter in its configuration. The properties to specify for
deployment are:

PropertiesDirUrl The directory that hold the properties files.

EIS based RMSes

67

UsersPropertiesFile The file that defines the users.

RolesPropertiesFile The file that defines the roles.

GroupsPropertiesFile The file that defines the groups.

A typical deployment configuration file for JBoss is shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- The properties based RMS resource adaptor service configuration -->
<connection-factories>
<no-tx-connection-factory>
<jndi-name>DefaultWfMOpenRmsRA</jndi-name>
<rar-name>
de.danet.an.plutoportalapp.ear#de.danet.an.workflow.propsrmsra.rar

</rar-name>
<connection-definition>
de.danet.an.workflow.rmsimpls.eisrms.aci.RmsConnectionFactory

</connection-definition>
<config-property name="PropertiesDirUrl" type="java.lang.String">
${jboss.server.config.url}

</config-property>
<config-property name="UsersPropertiesFile" type="java.lang.String">
wfdemopluto-users.properties

</config-property>
<config-property name="RolesPropertiesFile" type="java.lang.String">
wfdemopluto-roles.properties

</config-property>
<config-property name="GroupsPropertiesFile" type="java.lang.String">
wfdemopluto-groups.properties

</config-property>
</no-tx-connection-factory>

</connection-factories>

Figure 6.1. Sample resource adapter configuration for JBoss

Note that JBoss requires that the name of the RAR is qualified with the name of the EAR that con-
tains the RAR. You must therefore adapt the deployment configuration to the name of your EAR.

At the first glance it might seem overkill to implement the file based resource management as a re-
source adapter using the JCA. But if you take a closer look, you'll find that even a read-only file
database is best modelled as an EIS in the J2EE architecture. And it's the easiest way to push the
configuration options to your application server's management interface.

6.4.2.2.2. The LDAP based resource adapter

The most likely found, standard based resource management facility in an organization is an LDAP
server. The WfMOpen distribution therefore includes an implementation of an LDAP based re-
source adapter for the resource management service.

All information required to access the LDAP server is made known to the resource adapter in its
configuration. The properties to specify for deployment are:

JavaNamingFactoryInitial The value of java.naming.factory.initial used
when creating the initial context. Defaults to
com.sun.jndi.ldap.LdapCtxFactory.

JavaNamingSecurityAu-
thentication

The value of
java.naming.security.authentication used

EIS based RMSes

68

when creating the initial context. Defaults to simple.

JavaNamingProviderUrl The value of java.naming.provide.url used when
creating the initial context. Defaults to
ldap://localhost:389.

JavaNamingSecurityPrin-
cipal

The value of java.naming.security.principal
used when creating the initial context. Optional, i.e. need not
be specified if your LDAP server allows anonymous access.

JavaNamingSecurityCre-
dentials

The value of java.naming.security.credentials
used when creating the initial context. Only used when
JavaNamingSecurityPrincipal has been set.

UserCtxDN The DN of the directory entry that contains all known users.

UserFilter A filter expression applied when listing all known users in the
directory specified by UserCtxDN.

UserSearchAttribute The user entry's attribute used when searching for an entry
that matches the principal name or a criterion in member re-
source selection. Defaults to uid.

UserResourceNameAttrib-
ute

The user entry's attribute used as resource display name. De-
faults to cn.

UserMemberKeyAttribute When searching for users that are members of groups or roles,
an attribute of the groups' or roles' entries is by default com-
pared to the user entry's DN. If, however, a user member key
attribute is specified, the value of this attribute is read from
the user entry, and this value is used for comparision instead
of the user entry's DN.

GroupCtxDN The DN of the directory entry that contains all known groups.

GroupFilter A filter expression applied when listing all known groups in
the directory specified by GroupCtxDN.

GroupSearchAttribute The group entry's attribute used when searching for an entry
that matches a criterion in group resource selection. Defaults
to cn.

GroupResourceNameAttrib-
ute

The group entry's attribute used as resource display name.
Defaults to cn.

GroupMemberAttribute When searching for users that are members of groups, either
the user entry's DN or the value of an attribute from the user
entry (see above) is compared to an attribute of all role
entries. The role attribute used is specified with this property.

RoleCtxDN The DN of the directory entry that contains all known roles.

RoleFilter A filter expression applied when listing all known roles in the
directory specified by UserCtxDN.

RoleSearchAttribute The role entry's attribute used when searching for an entry
that matches a criterion in role resource selection. Defaults to
cn.

RoleResourceNameAttrib-
ute

The role entry's attribute used as resource display name. De-
faults to cn.

RoleMemberAttribute When searching for users that are members of roles, either the
user entry's DN or the value of an attribute from the user

EIS based RMSes

69

entry (see above) is compared to an attribute of all role
entries. The role entry's attribute used is specified with this
property.

A sample deployment configuration is shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- The properties based RMS resource adaptor service configuration -->
<connection-factories>
<no-tx-connection-factory>
<jndi-name>DefaultWfMOpenRmsRA</jndi-name>
<rar-name>
de.danet.an.plutoportalapp.ear#de.danet.an.workflow.ldaprmsra.rar

</rar-name>
<connection-definition>
de.danet.an.workflow.rmsimpls.eisrms.aci.RmsConnectionFactory

</connection-definition>
<config-property name="UserCtxDN" type="java.lang.String">
ou=People,dc=my-domain,dc=com

</config-property>
<config-property name="GroupCtxDN" type="java.lang.String">
ou=ResourceGroups,dc=my-domain,dc=com

</config-property>
<config-property name="RoleCtxDN" type="java.lang.String">
ou=ResourceRoles,dc=my-domain,dc=com

</config-property>
</no-tx-connection-factory>

</connection-factories>

Figure 6.2. Sample resource adapter configuration

Note that JBoss requires that the name of the RAR is qualified with the name of the EAR that con-
tains the RAR. You must therefore adapt the deployment configuration to the name of your EAR.

EIS based RMSes

70

Chapter 7. Wf-XML
Dirk Schnelle, Danet GmbH
Dr. Michael Lipp, Danet GmbH

WfMOpen has full support for Wf-XML 2.0 as proposed by the WfMC to enable remote clients to
access WfMOpen using SOAP requests. There are only minor deviations that are described below.
This documentation is not meant to be a tutorial for Wf-XML. It is assumed that the reader is famili-
ar with the ASAP and Wf-XML standards.

The implementation has successfully been tested with the generic ASAPClient that had been made
available by the WfMC when Wf-XML was initially published. We do not know of any other means
to test standard compliance and are therefore very interested in getting your feedback if you are test-
ing interoperability.

7.1. Installation
The Wf-XML interface is packaged as a separate web application component and distributed in
$DIST/lib/wfcore/de.danet.an.workflow.wfxml.war. In order to use the interface,
this WAR must be configured and included in your EAR. The demo application (see Appendix C,
The demo applications [337]) includes the interface, i.e. you can use the demo application to get ac-
quainted with the interface. The base url for accessing the interface in the demo is ht-
tp://localhost:8080/wfxml.

7.2. Accessing Wf-XML Resources
The central instance that is responsible to handle all requests is the
de.danet.an.workflow.clients.wfxml.Servlet. The different resource types are
identified through the ReceiverKey in the ASAP specific header. The ResponseRequired
tag is currently ignored. A response is returned in any case.

The ReceiverKey is a URI with the following structure
<schema:>//<authority>/<base_path>[?<query>] The parts up to base_path de-
scribe the deployment context of the servlet (e.g. http://localhost:8080/wfxml).

All parts that are needed to identify a specific resource are encoded in the query part of the URI as
key-value pairs. If the query is omitted, the request is assumed to be directed at the Service Re-
gistry. The following table shows how specific resources are addressed with query parameters.

Table 7.1. Resource identification through the ReceiverKey

Resource ProcessId PackageId ProcessKey ActivityKey

ServiceRegistry n/a n/a n/a n/a

Factory required required n/a n/a

Instance required required required n/a

Activity required required required required

A request to e.g. the Factory for the process proc that is described in package pkg is made us-
ing the following ReceiverKey (assuming the base path above): ht-
tp://localhost:8080/wfxml?Resource=Factory&PackageId=pkg&ProcessId=
proc

Note that the values for PackageId and ProcessId must be www-form-urlencoded UTF-8
charset identifiers.

71

Of course, the usual procedure is to obtain resource references by requesting listings from the parent
resources, starting with the Service Registry. In some cases, however, the direct approach
may be required (e.g. the above mentioned ASAPClient starts at the Factory level, i.e. you have
to enter the resource reference to a factory).

The names of the states, as specified by ASAP, are enhanced to match the state names as they are
used by WfMOpen. These extended state names have the ASAP prefix followed by a "." and the
substate as it is returned by the OMG API.

7.3. Properties
ASAP specifies, that SetPropertiesRq calls need not support the modification of all properties
that are given, but at least one to have any effect. Properties that are specified in the request, but can
not be altered are ignored without warning.

WfMOpen supports modification of the following properties:

• ServiceRegistry

• No modifications possible

• Factory

• No modifications possible

• Instance

• Description

• ContextData

• Activity

• Name

• Description

7.4. Deviations from the Wf-XML 2.0 Standard
The implementation is based on the ASAP specification of OASIS and Wf-XML 2.0. It turned out
that their schema definitions are erroneous. This implementation is shipped with adapted and par-
tially corrected schema definitions.

7.4.1. ServiceRegistry
The implementation of NewDefinitionRq differs from the specification. If the factory exists, the
process definition will be overwritten without warning. It is also possible to create multiple factories
using a single request. Neither the ASAP specification nor the Wf-XML specification consider the
deletion of processes. Using this approach it is possible to delete processes within a package by
simply overwriting the package definition.

The implementation of GetProperties produces XML that fails validation, since the Wf-XML
schema definition is erroneous at this point. The ASAP schema defines groups for Instance, Factory,
and Observer. Wf-XML defines new groups for the ServiceRegistry and the Activity resources,
which are not referenced by GetPropertiesRs, since this is specified in the ASAP schema, and
which does not know about any extensions. As a consequence the new groups for the Service Re-
gistry and the Activity resource must not be a part of a GetPropertiesRs message.

The specification mentions that a ListDefinitions may contain filters, i.e. Name and

Properties

72

1What would be the point in using Wf-XML to access WfMOpen when you have a Java client?
2Unfortunately, our WSDL file does not work with the wsimport tool of Java 6 because this tool enforces more XML
schema restrictions. I.e. it behaves correctly, but the problems cannot be fixes without major changes in the files provided by
OASIS and the WfMC (these files could really use some cleanup).

. These filters are missing in the schema definition and are not implemented. However, filtering of
factories might make sense, but more in terms of the package and process ids, rather than the name,
which might be ambivalent.

7.4.2. Factory
SetDefinition is not implemented. As a workaround, NewDefinition of ServiceRe-
gistry can be used instead, see above.

7.4.3. Instance
TerminateRq is not implemented, since the specification for this request in the ASAP schema is
missing. The Wf-XML specification refers to the ASAP specification for this request, but it is not
mentioned there. As a workaround it is possible to use a ChangeStateRq instead.

The SubscribeRq request allows to receive notification messages, if the process state changes.
The ASAP specification is not precise at this point. The implemented behavior for these critical
points is described below.

• Completion of a process includes also a state changes. Observers will receive StateChangeRq
before a CompletedRq . ASAP provides no hints, if the latter one is intended to be a replace-
ment for the first one.

• The observer will be unsubscribed if the process terminates. UnsubscribeRq requests are ig-
nored afterwards.

7.4.4. Activity
The implementation of GetProperties produces XML that fails validation caused by an error in
the Wf-XML schema as it is described for the Service Registry.

For GetProperties the field DueDate contains a timestamp that matches Long.MAX_VALUE,
since this date is currently not available using the API.

7.5. Example Client
This section provides an example of a C# client that is developed using Microsoft Visual Studio
20051.

WfMOpen's Wf-XML interface ships with a WSDL description that can be used to generate code
for a client. This WSDL is based on the WSDL that is available from OASIS and fixes some prob-
lems that we have encountered. Visual Studio supports code generation from the supplied WSDL
file with the wsdl tool2. On the Visual Studio Command Prompt enter

wsdl /language:cs /namespace:WfMOpen.WfXML /out:WfMOpenService.cs <base-url>/wfxml/wfxml?wsdl

Replace <base-url> with the URL of your WfMOpen distribution. This will create a file Wf-
MOpenService.cs that has to added to your Visual Studio solution. The error messages have their
cause in the erroneous ASAP and Wf-XML schema defintions and can be ignored. Do not forget to
add a reference to System.Web.Services. The following code will print a list of all declared
processes on the console:

Factory

73

using System;
using System.Collections.Generic;
using System.Text;
using WfMOpen.WfXML;

namespace WfXMLTestClient
{

class Program
{

static void Main(string[] args)
{

WfXmlServiceRegistry service = new WfXmlServiceRegistry();
Request req = new Request();
req.ReceiverKey = "<base-url>/wfxml/ServiceRegistry";
service.RequestValue = req;

DefinitionInfo[] definitions =
service.ListDefintions("<ListDefinitionRq/>");

for (int i = 0; i < definitions.Length; i++)
{

DefinitionInfo info = definitions[i];
Console.WriteLine(info.DefinitionKey);

}
}

}
}

Example Client

74

1Provided that it uses portal technology, of course.

Chapter 8. Management portlets
Besides the engine component, WfMOpen includes a GUI for common management tasks. The GUI
is implemented as a portlet application, i.e. a set of JSR-168 compliant portlets. Portals and portlets
are the state of the art (if not only) open component technology for Web based GUIs. Providing the
management GUI as portlets allows you to easily integrate the portlets in your specific application
GUI1. At the same time, a small footprint, stand-alone management GUI can be provided by using
the minimal Pluto portal driver (see Apache Pluto site [ht-
tp://portals.apache.org/pluto/v101/userguide/portal.html]).

8.1. Process definition portlet
The process definition portlet enables an administrator to view the available process definitions and
start new processes.

Figure 8.1. Process definition page

To start a new process, simply click on the start icon (green triangle). If a process is to be started in
debugging mode (see Section 2.6, “Debugging workflows” [19]) check the checkbox underneath the
list of process definitions before starting the process. (Note that the screenshot shows both the pro-
cess definition portlet and the process upload portlet described below.)

8.2. Process definition upload portlet
Also depicted in the figure above is the process definition upload. It allows the selection and upload
of new process definitions.

8.3. Process portlet
The process portlet initially shows the list of processes managed by the workflow engine.

75

http://portals.apache.org/pluto/v101/userguide/portal.html
http://portals.apache.org/pluto/v101/userguide/portal.html
http://portals.apache.org/pluto/v101/userguide/portal.html

Figure 8.2. Process list

Clicking on a process name navigates to a detail view of the process. Use the bread-crumb naviga-
tion at the top of the portlet to go back to the process list ("All Processes").

Figure 8.3. Process detail

Clicking on the small listing icon of either the process or an activity shows the events associated
with the process or an activity.

Process portlet

76

Figure 8.4. Events display

For event type "processContextChanged", clicking on the event type displays the changes below the
list of events.

A differently configured instance of the portlet can be displayed by selecting the "Assignments"
item in the menu on the left. In this configuration, the portlet initially displays the list of known re-
sources. Clicking on a resource name shows all assigned activities.

Figure 8.5. Assignments display

Clicking on a process name leads (again) to the detail view of the process. The only difference to the
detail view reached from the process list is that the selected assignee is emphasized in the display.

Deploying the portlet application in a
portal

77

2The default configuration file is "hidden" in one of the jars and overridden by the newly created file.

8.4. Deploying the portlet application in a
portal
8.4.1. General procedure

The portlet application is packaged as a self-contained WAR, i.e. it includes all libraries, resources
etc. required to run the portlet in an JSR-168 compliant portal.

The only (obviously) missing libraries are the client libraries of the application server that runs the
workflow engine. These libraries are required by the portlets to contact the workflow engine. We as-
sume that these libraries are made available in the portal as a shared resource, not on a per-portlet
application base. If the runtime environment of the portal is an application server (not just a servlet
container), this is usually the case by default. If the portal runs e.g. in Tomcat, the application serv-
er's client libraries should be copied to $CATALINA_HOME/shared/lib.

Unless the portal and the workflow engine run in the same application server, the portlets need some
information to lookup the JNDI service of the application server that runs the workflow engine. The
preferred way to configure the JNDI server is adding environment entries to the portlet application's
web.xml as described in newInstance() [251]. The propagation of the security identity in call to the
workflow engine is left to the portlet container as described in the "Java Portlet Specification"
(JSR-168), section PLT.20.5 "Propagation of Security Identity in EJB Calls".

8.4.2. Deploying in Jetspeed2
As distributed, the Jetspeed2 portal runs in the Tomcat servlet container environment (see Jetspeed2
Home Page [http://portals.apache.org/jetspeed-2]). It therefore requires both the installation of the
application server's client libraries and a configuration update to ensure security identity propaga-
tion. Both issues are described in the following section assuming that the workflow engine is de-
ployed in JBoss.

After installation, start the portal once and shut it down again.

Now copy $JBOSS_HOME/client/jbossall-client.jar to
$JETSPEED_HOME/shared/lib/. This makes the JBoss client libraries availabe to all com-
ponents run in this Tomcat environment.

In $JETSPEED_HOME/webapps/jetspeed/WEB-INF/classes/ create a new file lo-
gin.conf with the following contents:

Jetspeed {
org.apache.jetspeed.security.impl.DefaultLoginModule required;
org.jboss.security.ClientLoginModule required;

};

The line org.jboss.security.ClientLoginModule required; (added with respect to
the default configuration2) causes the security credentials to be propagated to invoke EJBs.

General procedure

78

http://portals.apache.org/jetspeed-2
http://portals.apache.org/jetspeed-2
http://portals.apache.org/jetspeed-2

Chapter 9. Known bugs and
limitations
9.1. Bugs

Currently none known.

9.2. Limitations

• XPDL TypeDeclarations are currently not supported. As a workaround, simply use
<SchemaType/> as type specification. Note that the implementation of type declarations will
only make the type information available at the API. There will be no verification of complex
process relevant data set using the API against the type declarations.

• Currently only "text/javascipt", V1.5 and "text/ecmascript", 3rd Edition are supported as scripting
languages.

• The XForms tool does currently not support the XForms Repeat Module as described in the
XForms Recommendation.

79

80

Appendix A. The API documentation
A.1. Package de.danet.an.workflow.omgcore

This package defines the core domain of a workflow management system. It is an adaption of the
OMG "Workflow Management Facility Sepcification, V1.2". We consider the interfaces and classes
in this package (together with the interfaces and classes in the extended API) to be useable as
a general Java workflow API, i.e. if there was a JSR for a Java workflow API, we think the merger
of these two packages would be a good starting point.

We have tried to follow the original specification as close as possible. However, some conventions
used by OMG do not fit in the Java environment and changes have been made accordingly.

The main differences are:

• OMG separates words in identifiers using underscores. In the Java environment, words are delim-
ited by using a capital letter.

• The pattern for relationships has been replaced by a single access method RELNAMEs that returns
a collection (the plural "s" has been omitted from the relation history of interface WfExecu-
tionObject for gramatical reasons).

• The OMG model introduces a class WfEventAudit . While the collection of WfEventAudit
s may be considered the result of an audit, we think that individual items are rather
WfAuditEvent s. This conforms better to the Java naming scheme where event classes end
with "...Event" and the corresponding listener interfaces with "...Listener".

• We have appended " ...Exception " to the names of the exceptions, as is usual in Java. Addi-
tionally, we have put the exceptions in a separate sub-package to avoid naming conflicts when all
omgcore classes are imported with a wildcard import.

• There are no enumeration types in Java. While, in general, elements of enumeration types can
simply be mapped to constant definitions, we have not followed this approach in all cases.

• In the Java environment, the states and substates of an execution object can conveniently be
modelled as a class hierarchy . This provides type safe usage and allows to define
some convenient methods for handling state.

We have, however not changed the following:

• The access method for attributes have not been renamed getAttribute() . The getX() /
setX(...) pattern has been introduced by JavaBeans for the configuration of component prop-
erties, not as a general mechanism to access attributes. The properties used in the OMG model are
dynamic data properties, not configuration options. Therefore, there is no reason why they should
follow the getX() / setX(...) pattern

The documentation of classes and methods in this package consists mostly of an abbreviated version
of the description provided by OMG's "Workflow Management Facility Specification, V1.2". Un-
less otherwise stated, the description from the specification applies fully, i.e. you can use the spe-
cification to obtain a detailed understanding of the functionallity provided.

The following picture shows the complete model.

81

A.1.1. Additional Information

Since V1.0

Additional Information

82

A.1.2. Exception AlreadyRunningException
This exception is raised by an attempt to start a WfProcess that is already running.

A.1.2.1. Synopsis

public class de.danet.an.workflow.omgcore.AlreadyRunningException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public AlreadyRunningException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.2, “Exception AlreadyRun-
ningException” [83]

A.1.2.2. AlreadyRunningException(String)

public AlreadyRunningException(String msg);

Parameters

msg Description of the cause.

Creates a new AlreadyRunningException with the given message.

A.1.3. Exception AlreadySuspendedException
This exception is raised by an attempt to suspend a WfExecutionObject that is already suspen-
ded.

A.1.3.1. Synopsis

public class de.danet.an.workflow.omgcore.AlreadySuspendedException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public AlreadySuspendedException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Exception AlreadySuspendedExcep-
tion

83

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.3, “Exception AlreadySuspende-
dException” [83]

A.1.3.2. AlreadySuspendedException(String)

public AlreadySuspendedException(String msg);

Parameters

msg Description of the cause.

Creates a new AlreadySuspendedException with the given message.

A.1.4. Exception CannotChangeRequesterException
This exception is raised when a change of a WfRequester is requested, but cannot be fulfilled.

A.1.4.1. Synopsis

public class de.danet.an.workflow.omgcore.CannotChangeRequesterException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public CannotChangeRequesterException();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.4,
“Exception CannotChangeRequesterException” [84]

A.1.5. Exception CannotCompleteException
This exception is raised by an attempt to complete execution of a WfExecutionObject when it
cannot be completed yet.

A.1.5.1. Synopsis

public class de.danet.an.workflow.omgcore.CannotCompleteException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public CannotCompleteException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Exception CannotChangeRequester-
Exception

84

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.5, “Exception CannotCom-
pleteException” [84]

A.1.5.2. CannotCompleteException(String)

public CannotCompleteException(String msg);

Parameters

msg Description of the cause.

Creates a new CannotCompleteException with the given message.

A.1.6. Exception CannotResumeException
This exception is raised by an operation on a WfExecutionObject that attempts to resume an
object that is not in a proper condition.

A.1.6.1. Synopsis

public class de.danet.an.workflow.omgcore.CannotResumeException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public CannotResumeException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.6, “Exception CannotRe-
sumeException” [85]

A.1.6.2. CannotResumeException(String)

public CannotResumeException(String msg);

Parameters

msg Description of the cause.

Creates a new CannotResumeException with the given message.

Exception CannotResumeException

85

A.1.7. Exception CannotStartException
This exception is raised by an attempt to start a WfProcess that cannot be started yet.

A.1.7.1. Synopsis

public class de.danet.an.workflow.omgcore.CannotStartException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public CannotStartException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.7, “Exception CannotStartEx-
ception” [86]

A.1.7.2. CannotStartException(String)

public CannotStartException(String msg);

Parameters

msg Description of the cause.

Creates a new CannotStartException with the given message.

A.1.8. Exception CannotStopException
This exception is raised by an operation on a WfExecutionObject that attempts to stop an ob-
ject that is not in a proper condition.

A.1.8.1. Synopsis

public class de.danet.an.workflow.omgcore.CannotStopException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public CannotStopException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Exception CannotStopException

86

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.8, “Exception CannotStopEx-
ception” [86]

A.1.8.2. CannotStopException(String)

public CannotStopException(String msg);

Parameters

msg Description of the cause.

Creates a new CannotStopException with the given message.

A.1.9. Exception CannotSuspendException
This exception is raised by an operation on a WfExecutionObject that attempts to suspend an
object that is not in the proper condidition.

A.1.9.1. Synopsis

public class de.danet.an.workflow.omgcore.CannotSuspendException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public CannotSuspendException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.9, “Exception CannotSuspen-
dException” [87]

A.1.9.2. CannotSuspendException(String)

public CannotSuspendException(String msg);

Parameters

msg Description of the cause.

Creates a new CannotSuspendException with the given message.

A.1.10. Exception HistoryNotAvailableException
This exception is raised by a request for event audit history of a WfExecutionObject when the

Exception CannotSuspendException

87

history is not available. For example because the implementation of the WFM facility does not sup-
port recording of history for a specific execution object.

A.1.10.1. Synopsis

public class de.danet.an.workflow.omgcore.HistoryNotAvailableException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public HistoryNotAvailableException();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.10,
“Exception HistoryNotAvailableException” [87]

A.1.11. Exception InvalidControlOperationException
This exception is raised by an operation on a WfExecutionObject that attempts to perform an
invalid control operation on that object.

A.1.11.1. Synopsis

public abstract class de.danet.an.workflow.omgcore.InvalidControlOperationException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidControlOperationException(String msg);

}

Direct known subclasses :
de.danet.an.workflow.omgcore.AlreadyRunningException ,
de.danet.an.workflow.omgcore.AlreadySuspendedException ,
de.danet.an.workflow.omgcore.CannotCompleteException ,
de.danet.an.workflow.omgcore.CannotResumeException ,
de.danet.an.workflow.omgcore.CannotStartException ,
de.danet.an.workflow.omgcore.CannotStopException ,
de.danet.an.workflow.omgcore.CannotSuspendException ,
de.danet.an.workflow.omgcore.NotRunningException ,
de.danet.an.workflow.omgcore.NotSuspendedException

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88]

A.1.11.2. InvalidControlOperationException(String)

public InvalidControlOperationException(String msg);

Exception InvalidControlOperationEx-
ception

88

Parameters

msg Description of the cause.

Creates a new InvalidControlOperationException with the given message.

A.1.12. Exception InvalidDataException
This exception is raised by an attempt to update the context of the result of a WfExecutionOb-
ject with data that does not match the signature of that object.

A.1.12.1. Synopsis

public class de.danet.an.workflow.omgcore.InvalidDataException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidDataException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.12,
“Exception InvalidDataException” [89]

A.1.12.2. InvalidDataException(String)

public InvalidDataException(String msg);

Parameters

msg Description of the cause.

Creates a new InvalidDataException with the given message.

A.1.13. Exception InvalidPerformerException
This exception is raised by an attempt to signal a WfAuditEvent to a WfRequester that was
not created by one of the WfProcesses associated with the WfRequester .

A.1.13.1. Synopsis

public class de.danet.an.workflow.omgcore.InvalidPerformerException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidPerformerException();

}

Exception InvalidDataException

89

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.13,
“Exception InvalidPerformerException” [89]

A.1.14. Exception InvalidPriorityException
This exception is raised by an attempt to assign an invalid priority to a WfExecutionObject .

A.1.14.1. Synopsis

public class de.danet.an.workflow.omgcore.InvalidPriorityException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidPriorityException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.14,
“Exception InvalidPriorityException” [90]

A.1.14.2. InvalidPriorityException(String)

public InvalidPriorityException(String msg);

Parameters

msg Description of the cause.

Creates a new InvalidPriorityException with the given message.

A.1.15. Exception InvalidRequesterException
This exception is raised when a WfRequester is being identified that cannot be a "parent" of in-
stances of the process modell. When a WfRequester is rejected, the invoking application might
decide not to register a WfRequester with the WfProcess .

A.1.15.1. Synopsis

public class de.danet.an.workflow.omgcore.InvalidRequesterException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidRequesterException();

Exception InvalidPriorityException

90

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.15,
“Exception InvalidRequesterException” [90]

A.1.16. Exception InvalidResourceException
This exception is raised by an attempt to assign or remove an invalid resource.

A.1.16.1. Synopsis

public class de.danet.an.workflow.omgcore.InvalidResourceException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidResourceException();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.16,
“Exception InvalidResourceException” [91]

A.1.17. Exception InvalidStateException
This exception is raised by an attempt to change the state of a WfExecutionObject to a state
that is not defined for that object.

A.1.17.1. Synopsis

public class de.danet.an.workflow.omgcore.InvalidStateException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidStateException();

public InvalidStateException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Exception InvalidResourceException

91

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.17,
“Exception InvalidStateException” [91]

A.1.17.2. InvalidStateException()

public InvalidStateException();

Creates a new InvalidStateException .

A.1.17.3. InvalidStateException(String)

public InvalidStateException(String msg);

Parameters

msg Description of the cause.

Creates a new InvalidStateException with the given message.

A.1.18. Exception NotAssignedException
This exception is raised by an attempt to release a WfResource from an assignment it is not asso-
ciated with.

A.1.18.1. Synopsis

public class de.danet.an.workflow.omgcore.NotAssignedException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public NotAssignedException();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.18,
“Exception NotAssignedException” [92]

A.1.19. Exception NotEnabledException
This exception is raised by an attempt to create a WfProcess using a WfProcessMgr that is
disabled.

A.1.19.1. Synopsis

public class de.danet.an.workflow.omgcore.NotEnabledException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public NotEnabledException(String msg);

Exception NotAssignedException

92

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.19,
“Exception NotEnabledException” [92]

A.1.19.2. NotEnabledException(String)

public NotEnabledException(String msg);

Parameters

msg Description of the cause.

Creates a new exception with the given message.

A.1.20. Exception NotRunningException
This exception is raised by an operation on a WfExecutionObject that attempts to perform a
control operation on an object that needs to be in a running state, but is not.

A.1.20.1. Synopsis

public class de.danet.an.workflow.omgcore.NotRunningException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public NotRunningException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.20, “Exception NotRunningEx-
ception” [93]

A.1.20.2. NotRunningException(String)

public NotRunningException(String msg);

Parameters

msg Description of the cause.

Exception NotRunningException

93

Creates a new NotRunningException with the given message.

A.1.21. Exception NotSuspendedException
This exception is raised by an operation on a WfExecutionObject that attempts to perform a
control operation on an object that needs to be in a suspended state, but is not.

A.1.21.1. Synopsis

public class de.danet.an.workflow.omgcore.NotSuspendedException extends, de.danet.an.workflow.omgcore.InvalidControlOperationException
implements, java.io.Serializable {

// Public Constructors

public NotSuspendedException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.11,
“Exception InvalidControlOperationException” [88] -> Section A.1.21, “Exception NotSuspende-
dException” [94]

A.1.21.2. NotSuspendedException(String)

public NotSuspendedException(String msg);

Parameters

msg Description of the cause.

Creates a new NotSuspendedException with the given message.

A.1.22. Interface ProcessData
ProcessData represents context and result data of a WfExecutionObject . We assume that
the names in a NameValueSequence as defined in the OMG sprecification have to be unique (it
is a reasonable assumption, although the OMG specification does not state it explicitly). Therefore
we simply map the NameValueSequence to a Map with keys of type String and values of
type Object .

A.1.22.1. Synopsis

public interface de.danet.an.workflow.omgcore.ProcessData extends, java.util.Map {
}

Inheritance Path. Section A.1.22, “Interface ProcessData” [94]

A.1.23. Interface ProcessDataInfo

Exception NotSuspendedException

94

ProcessDataInfo describes the structure of the process data associated with a WfExecu-
tionObject . The OMG specification defines that the data type is specified by its "IDL type rep-
resented by its string name". Porting this to Java is a bit difficult as the equivalent to this would be
to support something like textual representations of Java types, i.e. Java source code.

While this issue needs further investigation, we define the following: Java primitive types are rep-
resented by the corresponding classes (e.g. boolean values are represented by a map entry with value
java.lang.Boolean.class). Support of complex types depends on the workflow engine
used (some may support any [serializable] Java object as process relevant data, some may support
only XML as serialized format), as does the way process definitions define complex types (e.g. as
XML Schema Description).

In addition to the classes representing Java primitive forms, an implementation may therefore spe-
cify additional types to describe the type information of a process data item.

A.1.23.1. Synopsis

public interface de.danet.an.workflow.omgcore.ProcessDataInfo extends, java.util.Map {
}

Inheritance Path. Section A.1.23, “Interface ProcessDataInfo” [94]

A.1.24. Exception RequesterRequiredException
This exception is raised when a valid WfRequester is required by the process definition, but one
is not supplied.

A.1.24.1. Synopsis

public class de.danet.an.workflow.omgcore.RequesterRequiredException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public RequesterRequiredException();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.24,
“Exception RequesterRequiredException” [95]

A.1.25. Exception ResultNotAvailableException
This exception is raised when the requested result of a WfExecutionObject is not available
(yet).

A.1.25.1. Synopsis

public class de.danet.an.workflow.omgcore.ResultNotAvailableException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public ResultNotAvailableException();

Exception RequesterRequiredExcep-
tion

95

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.25,
“Exception ResultNotAvailableException” [95]

A.1.26. Exception SourceNotAvailableException
This exception is raised by the request for the source of a WfAuditEvent when the source is no
longer available.

A.1.26.1. Synopsis

public class de.danet.an.workflow.omgcore.SourceNotAvailableException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public SourceNotAvailableException();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.26,
“Exception SourceNotAvailableException” [96]

A.1.27. Exception TransitionNotAllowedException
This exception is raised by an attempt to perform an invalid state transistion of a WfExecu-
tionObject .

A.1.27.1. Synopsis

public class de.danet.an.workflow.omgcore.TransitionNotAllowedException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public TransitionNotAllowedException(WfExecutionObject.State from,
WfExecutionObject.State to);

public TransitionNotAllowedException(WfExecutionObject.State from,
WfExecutionObject.State to,
String msg);

public TransitionNotAllowedException(String msg);

}

Exception SourceNotAvailableExcep-
tion

96

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.27,
“Exception TransitionNotAllowedException” [96]

A.1.27.2. TransitionNotAllowedException(String)

public TransitionNotAllowedException(String msg);

Parameters

msg the given message.

Creates a new TransitionNotAllowedException with the given message.

A.1.27.3. TransitionNotAllowedException(WfExecutionObject.Stat
e, WfExecutionObject.State)

public TransitionNotAllowedException(WfExecutionObject.State from,
WfExecutionObject.State to);

Parameters

from current state

to new state

Creates a new TransitionNotAllowedException .

A.1.27.4. TransitionNotAllowedException(WfExecutionObject.Stat
e, WfExecutionObject.State, String)

public TransitionNotAllowedException(WfExecutionObject.State from,
WfExecutionObject.State to,
String msg);

Parameters

from current state

to new state

msg description of the cause.

Creates a new TransitionNotAllowedException with the given message.

Exception UpdateNotAllowedExcep-
tion

97

A.1.28. Exception UpdateNotAllowedException
This exception is raised when it is not allowed to update the process context.

A.1.28.1. Synopsis

public class de.danet.an.workflow.omgcore.UpdateNotAllowedException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public UpdateNotAllowedException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.1.28,
“Exception UpdateNotAllowedException” [98]

A.1.28.2. UpdateNotAllowedException(String)

public UpdateNotAllowedException(String msg);

Parameters

msg description of the cause.

Creates a new Exception with the given message.

A.1.29. Interface WfActivity
WfActivity is a step in a process that is associated, as part of an aggregation, with a single Wf-
Process . It represents a request for work in the context of the containing WfProcess .

A.1.29.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfActivity extends, de.danet.an.workflow.omgcore.WfExecutionObject, de.danet.an.workflow.omgcore.WfRequester {
// Public Methods

public java.util.Collection assignments()
throws RemoteException;

public void complete()
throws RemoteException, CannotCompleteException;

public WfProcess container()
throws RemoteException;

public boolean isMemberOfAssignments(WfAssignment member)
throws RemoteException;

Interface WfActivity

98

public ProcessData result()
throws RemoteException, ResultNotAvailableException;

public void setResult(ProcessData result)
throws RemoteException, InvalidDataException;

}

Inheritance Path. Section A.1.29, “Interface WfActivity” [98]

A.1.29.2. assignments()

public java.util.Collection assignments()
throws RemoteException;

Parameters

return the collection of all the WfAssignment.

Exceptions

RemoteException if a system-level error occurs.

Returns all the WfAssignment associated with a WfActivity .

A.1.29.3. complete()

public void complete()
throws RemoteException, CannotCompleteException;

Exceptions

RemoteException if a system-level error occurs.

CannotCompleteException if the activity cannot be completed yet.

This method is used by an application to signal the completion of an activity. Note that this does not
necessarily imply that the activity's state changes to closed.completed .

XPDL allows an activity to be implemented by several tools that are executed in sequence. Only if
complete is called after the last tool has been started will the workflow engine change the activ-
ity's state to closed.completed . Else the activity will remain in the open.running state
and the next tool will be started. If complete is called while the activity's state has been set to
open.not_running.suspended the next tool will not be started until the activity is resumed.

The extended API provides methods for finding out which tool is currently being executed.

A.1.29.4. container()

public WfProcess container()
throws RemoteException;

Interface WfActivity

99

Parameters

return the process.

Exceptions

RemoteException if a system-level error occurs.

Returns the WfProcess that this activity is a part of.

A.1.29.5. isMemberOfAssignments(WfAssignment)

public boolean isMemberOfAssignments(WfAssignment member)
throws RemoteException;

Parameters

member the assignment in question.

return true if the assignment is among the assignments of this activ-
ity.

Exceptions

RemoteException if a system-level error occurs.

Check if the given assignment is among the assignments of this activity.

A.1.29.6. result()

public ProcessData result()
throws RemoteException, ResultNotAvailableException;

Parameters

return the process data as result

Exceptions

RemoteException if a system-level error occurs.

ResultNotAvailableExcep-
tion

if accessing to the result of an activity is not supported or the
result data are not available yet.

Interface WfActivity

100

Returns the result produced by the realization of the work request represented by an activity.

A.1.29.7. setResult(ProcessData)

public void setResult(ProcessData result)
throws RemoteException, InvalidDataException;

Parameters

result the result data.

Exceptions

RemoteException if a system-level error occurs.

InvalidDataException if the data do not match the signature of the activity or when
an invalid attempt is made to update the results of an activity;
lack of access rights might be one of those reasons.

Passes result data back to the workflow process. The data item names must be the names of formal
IN or OUT parameters of the currently invoked tool or subflow.

A.1.30. Interface WfAssignment
A WfAssignment links WfActivity objects to WfResource objects. These links represent
real assignements for enacting the activity.

A.1.30.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfAssignment extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public WfActivity activity()
throws RemoteException;

public WfResource assignee()
throws RemoteException;

public void setAssignee(WfResource newValue)
throws RemoteException, InvalidResourceException;

}

Inheritance Path. Section A.1.30, “Interface WfAssignment” [101]

A.1.30.2. activity()

public WfActivity activity()
throws RemoteException;

Parameters

Interface WfAssignment

101

return the associated activity.

Exceptions

RemoteException if a system-level error occurs.

A WfAssignment is associated with one WfActivity ; the association is established when the
assignment is created as part of the resource selection process for the activity. This method returns
the associated activity.

A.1.30.3. assignee()

public WfResource assignee()
throws RemoteException;

Parameters

return the associated resource.

Exceptions

RemoteException if a system-level error occurs.

A WfAssignment is associated with one WfResource ; the association is established when the
assignment is created as part of the resource selection process for the activity. This method returns
the associated resource.

A.1.30.4. setAssignee(WfResource)

public void setAssignee(WfResource newValue)
throws RemoteException, InvalidResourceException;

Parameters

newValue the new resource.

Exceptions

InvalidResourceException if an attempt is made to assign an invalid resource to the as-
signment.

RemoteException if a system-level error occurs.

A WfAssignment is associated with one WfResource ; the association is established when the
assignment is created as part of the resource selection process for the activity; this method can be
used to reassign the assignment to another resource at a later point in time.

Interface WfAssignmentAuditEvent

102

A.1.31. Interface WfAssignmentAuditEvent
A WfAssignmentAuditEvent provides an audit record of assignment change information for
either the status of an assignment change for a WfActivity or when an exisiting assignment is re-
assigned to another resource.

A.1.31.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfAssignmentAuditEvent extends, de.danet.an.workflow.omgcore.WfAuditEvent {
// Public Methods

public String newResourceKey();

public String newResourceName();

public String oldResourceKey();

public String oldResourceName();

}

Inheritance Path. Section A.1.31, “Interface WfAssignmentAuditEvent” [103]

A.1.31.2. newResourceKey()

public String newResourceKey();

Parameters

return the current value of the attribute.

Returns the current value of the attribute newResourceKey .

A.1.31.3. newResourceName()

public String newResourceName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute newResourceName .

A.1.31.4. oldResourceKey()

public String oldResourceKey();

Parameters

Interface WfAssignmentAuditEvent

103

return the current value of the attribute.

Returns the current value of the attribute oldResourceKey .

A.1.31.5. oldResourceName()

public String oldResourceName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute oldResourceName .

A.1.32. Interface WfAuditEvent
A WfAuditEvent provides an audit record of workflow event information.

It provides information on the source of the event and contains specific event data. Workflow events
include state changes, change of a resource assignment, and data changes. Workflow events are per-
sistent and can be accessed navigating the history relationship of a WfExecutionObject .

Workflow audit event objects are not part of the persistent state of their source workflow object.

A.1.32.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfAuditEvent {
// Public Static Fields

public static final String ACTIVITY_ASSIGNMENT_CHANGED = activityAssignmentChanged;

public static final String ACTIVITY_CONTEXT_CHANGED = activityContextChanged;

public static final String ACTIVITY_RESULT_CHANGED = activityResultChanged;

public static final String ACTIVITY_STATE_CHANGED = activityStateChanged;

public static final String PROCESS_CONTEXT_CHANGED = processContextChanged;

public static final String PROCESS_CREATED = processCreated;

public static final String PROCESS_STATE_CHANGED = processStateChanged;

// Public Methods

public String activityKey();

public String activityName();

public String eventType();

Interface WfAuditEvent

104

public String processKey();

public String processMgrName();

public String processMgrVersion();

public String processName();

public WfExecutionObject source()
throws SourceNotAvailableException;

public java.util.Date timeStamp();

}

Inheritance Path. Section A.1.32, “Interface WfAuditEvent” [104]

A.1.32.2. ACTIVITY_ASSIGNMENT_CHANGED

public static final String ACTIVITY_ASSIGNMENT_CHANGED = activityAssignmentChanged;

An identifier for the event type "activityAssignmentChanged"

A.1.32.3. ACTIVITY_CONTEXT_CHANGED

public static final String ACTIVITY_CONTEXT_CHANGED = activityContextChanged;

An identifier for the event type "activityContextChanged"

A.1.32.4. ACTIVITY_RESULT_CHANGED

public static final String ACTIVITY_RESULT_CHANGED = activityResultChanged;

An identifier for the event type "activityResultChanged"

A.1.32.5. ACTIVITY_STATE_CHANGED

public static final String ACTIVITY_STATE_CHANGED = activityStateChanged;

An identifier for the event type "activityStateChanged"

A.1.32.6. PROCESS_CONTEXT_CHANGED

public static final String PROCESS_CONTEXT_CHANGED = processContextChanged;

An identifier for the event type "processContextChanged"

A.1.32.7. PROCESS_CREATED

public static final String PROCESS_CREATED = processCreated;

An identifier for the event type "processCreated"

Interface WfAuditEvent

105

A.1.32.8. PROCESS_STATE_CHANGED

public static final String PROCESS_STATE_CHANGED = processStateChanged;

An identifier for the event type "processStateChanged"

A.1.32.9. activityKey()

public String activityKey();

Parameters

return the current value of the attribute.

Returns the current value of the attribute activityKey .

A.1.32.10. activityName()

public String activityName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute activityName .

A.1.32.11. eventType()

public String eventType();

Parameters

return the current value of the attribute.

Returns the current value of the attribute eventType .

A.1.32.12. processKey()

public String processKey();

Parameters

return the current value of the attribute.

Returns the current value of the attribute processKey .

Interface WfAuditEvent

106

A.1.32.13. processMgrName()

public String processMgrName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute processMgrName .

A.1.32.14. processMgrVersion()

public String processMgrVersion();

Parameters

return the current value of the attribute.

Returns the current value of the attribute processMgrVersion .

A.1.32.15. processName()

public String processName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute processName .

A.1.32.16. source()

public WfExecutionObject source()
throws SourceNotAvailableException;

Parameters

return the current value of the attribute.

Exceptions

SourceNotAvailableExcep-
tion

if the source is not available.

Returns the current value of the attribute source . The source of the event is the WfExceut-
ionObject associated to the event, i.e. that triggered the event.

Interface WfAuditEvent

107

A.1.32.17. timeStamp()

public java.util.Date timeStamp();

Parameters

return the current value of the attribute.

Returns the current value of the attribute timeStamp .

A.1.33. Interface WfAuditHandler
The listener interface for receiving an event from a process.

A.1.33.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfAuditHandler extends, java.util.EventListener {
// Public Methods

public void receiveEvent(WfAuditEvent e)
throws InvalidPerformerException, RemoteException;

}

Inheritance Path. Section A.1.33, “Interface WfAuditHandler” [108]

A.1.33.2. receiveEvent(WfAuditEvent)

public void receiveEvent(WfAuditEvent e)
throws InvalidPerformerException, RemoteException;

Parameters

e the event.

Exceptions

InvalidPerformerExcep-
tion

thrown by the derived WfRequester if it receives an event
from a process that is not among its performers.

RemoteException if a system-level error occurs.

Called by the workflow engine if an event occurs.

A.1.34. Interface WfCreateProcessAuditEvent
A WfCreateProcessAuditEvent provides an audit record with information related to the cre-
ation of a process. If the process is created as a sub-process of another process that is synchronized
with the main process via a WfActivity requester, information on the requester is recorded.

Interface WfAuditHandler

108

A.1.34.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfCreateProcessAuditEvent extends, de.danet.an.workflow.omgcore.WfAuditEvent {
// Public Methods

public String pActivityKey();

public String pProcessKey();

public String pProcessMgrName();

public String pProcessMgrVersion();

public String pProcessName();

}

Inheritance Path. Section A.1.34, “Interface WfCreateProcessAuditEvent” [108]

A.1.34.2. pActivityKey()

public String pActivityKey();

Parameters

return the current value of the attribute.

Returns the current value of the attribute pActivityKey .

A.1.34.3. pProcessKey()

public String pProcessKey();

Parameters

return the current value of the attribute.

Returns the current value of the attribute pProcessKey .

A.1.34.4. pProcessMgrName()

public String pProcessMgrName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute pProcessMgrName .

Interface WfCreateProcessAuditEvent

109

A.1.34.5. pProcessMgrVersion()

public String pProcessMgrVersion();

Parameters

return the current value of the attribute.

Returns the current value of the attribute pProcessMgrVersion .

A.1.34.6. pProcessName()

public String pProcessName();

Parameters

return the current value of the attribute.

Returns the current value of the attribute pProcessName .

A.1.35. Interface WfDataAuditEvent
A WfDataAuditEvent provides an audit record of either context changes of a WfExecu-
tionObject or result changes of a WfActivity .

A.1.35.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfDataAuditEvent extends, de.danet.an.workflow.omgcore.WfAuditEvent {
// Public Methods

public ProcessData newData();

public ProcessData oldData();

}

Inheritance Path. Section A.1.35, “Interface WfDataAuditEvent” [110]

A.1.35.2. newData()

public ProcessData newData();

Parameters

return the current value of the attribute.

Returns the current value of the attribute newData .

A.1.35.3. oldData()

Interface WfDataAuditEvent

110

public ProcessData oldData();

Parameters

return the current value of the attribute.

Returns the current value of the attribute oldData .

A.1.36. Interface WfExecutionObject
WfExecutionObject is an abstract base interface that defines common attributes, states, and op-
erations for WfProcess and WfActivity .

A.1.36.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfExecutionObject extends, de.danet.an.workflow.omgcore.WfObject, java.io.Serializable {
// Public Methods

public void abort()
throws RemoteException, CannotStopException, NotRunningException;

public void changeState(String newState)
throws RemoteException, InvalidStateException, TransitionNotAllowedException;

public String description()
throws RemoteException;

public java.util.Collection history()
throws RemoteException, HistoryNotAvailableException;

public WfExecutionObject.State howClosed()
throws RemoteException;

public String key()
throws RemoteException;

public java.util.Date lastStateTime()
throws RemoteException;

public String name()
throws RemoteException;

public int priority()
throws RemoteException;

public ProcessData processContext()
throws RemoteException;

public void resume()
throws RemoteException, CannotResumeException, NotRunningException, NotSuspendedException;

Interface WfExecutionObject

111

public void setDescription(String newValue)
throws RemoteException;

public void setName(String newValue)
throws RemoteException;

public void setPriority(int newValue)
throws RemoteException, InvalidPriorityException, UpdateNotAllowedException;

public void setProcessContext(ProcessData newValue)
throws RemoteException, InvalidDataException, UpdateNotAllowedException;

public String state()
throws RemoteException;

public void suspend()
throws RemoteException, CannotSuspendException, NotRunningException, AlreadySuspendedException;

public void terminate()
throws RemoteException, CannotStopException, NotRunningException;

public java.util.Collection validStates()
throws RemoteException;

public WfExecutionObject.State whileOpen()
throws RemoteException;

public WfExecutionObject.State whyNotRunning()
throws RemoteException;

public WfExecutionObject.State workflowState()
throws RemoteException;

}

Inheritance Path. Section A.1.36, “Interface WfExecutionObject” [111]

A.1.36.2. abort()

public void abort()
throws RemoteException, CannotStopException, NotRunningException;

Exceptions

RemoteException if a system-level error occurs.

CannotStopException when the execution object cannot be aborted.

NotRunningException when the object is not running.

Requests enactment of a suspended execution object to be aborted before its normal completion.
The state is set to ClosedState.ABORTED.

Interface WfExecutionObject

112

A.1.36.3. changeState(String)

public void changeState(String newState)
throws RemoteException, InvalidStateException, TransitionNotAllowedException;

Parameters

newState State to change to.

Exceptions

InvalidStateException If newState is an invalid state for the execution object.

TransitionNotAllowedEx-
ception

If the transition from the current state to newState is not al-
lowed.

RemoteException If a communication error occurred.

Updates the current state of the execution object. As a result the state of execution objects associated
with this execution object might be updated, too.

A.1.36.4. description()

public String description()
throws RemoteException;

Parameters

return a string value of the description.

Exceptions

RemoteException If a communication error occurred.

Get the description of this WfExecutionObject .

A.1.36.5. history()

public java.util.Collection history()
throws RemoteException, HistoryNotAvailableException;

Parameters

return the collection of all WfAuditEvent items.

Exceptions

Interface WfExecutionObject

113

RemoteException if a system-level error occurs.

HistoryNotAvailableEx-
ception

if any audit event item available.

Return all WfAuditEvent items associated with this execution object.

A.1.36.6. howClosed()

public WfExecutionObject.State howClosed()
throws RemoteException;

Parameters

return the state as State object.

Exceptions

RemoteException If a communication error occurred.

Returns the workflow state for closed execution objects.

A.1.36.7. key()

public String key()
throws RemoteException;

Parameters

return string of the identifier.

Exceptions

RemoteException If a communication error occurred.

Identifier of the execution object.

A.1.36.8. lastStateTime()

public java.util.Date lastStateTime()
throws RemoteException;

Parameters

return value of the time.

Interface WfExecutionObject

114

Exceptions

RemoteException if a system-level error occurs.

Return the time the state of the WfExecutionObject was changed.

A.1.36.9. name()

public String name()
throws RemoteException;

Parameters

return string of the descriptive identifier.

Exceptions

RemoteException If a communication error occurred.

Return human readable, descriptive identifier of the execution object.

A.1.36.10. priority()

public int priority()
throws RemoteException;

Parameters

return the value of the priority.

Exceptions

RemoteException if a system-level error occurs.

Return the priority of this WfExecutionObject .

A.1.36.11. processContext()

public ProcessData processContext()
throws RemoteException;

Parameters

return the process relevant data that define the context of the execu-

Interface WfExecutionObject

115

tion object.

Exceptions

RemoteException If a communication error occurred.

Return the context of this WfExecutionObject .

A.1.36.12. resume()

public void resume()
throws RemoteException, CannotResumeException, NotRunningException, NotSuspendedException;

Exceptions

RemoteException if a system-level error occurs.

CannotResumeException when the execution object cannot be resumed. For example,
resuming a WfActivity might not be allowed when the con-
taining WfProcess is suspended.

NotRunningException when the object is not running.

NotSuspendedException when the object is not suspended.

Requests enactment of a suspended execution object to be resumed. The state is set to Open-
State.Running (or a substate) from NotRunningState.SUSPENDED.

A.1.36.13. setDescription(String)

public void setDescription(String newValue)
throws RemoteException;

Parameters

newValue the description of this WfExecutionObject .

Exceptions

RemoteException If a communication error occurred.

Set the description of this WfExecutionObject .

A.1.36.14. setName(String)

public void setName(String newValue)
throws RemoteException;

Interface WfExecutionObject

116

Parameters

newValue the description of this WfExecutionObject .

Exceptions

RemoteException If a communication error occurred.

Set the name of this WfExecutionObject .

A.1.36.15. setPriority(int)

public void setPriority(int newValue)
throws RemoteException, InvalidPriorityException, UpdateNotAllowedException;

Parameters

newValue new priority to set

Exceptions

RemoteException if a system-level error occurs.

InvalidPriorityException when the specified priority is out of range.

UpdateNotAllowedExcep-
tion

when the priority cannot be updated.

Update the priority of this WfExecutionObject .

A.1.36.16. setProcessContext(ProcessData)

public void setProcessContext(ProcessData newValue)
throws RemoteException, InvalidDataException, UpdateNotAllowedException;

Parameters

newValue process relevant data that define the context of the execution
object.

Exceptions

RemoteException if a system-level error occurs.

InvalidDataException when new process data does not match the signature of this
WfExecutionObject .

Interface WfExecutionObject

117

UpdateNotAllowedExcep-
tion

raised when the implementation of the WfM Facility or the
specific workflow process does not allow an update of the
context.

Set the context of this WfExecutionObject .

A.1.36.17. state()

public String state()
throws RemoteException;

Parameters

return the current state.

Exceptions

RemoteException If a communication error occurred.

Gets the current state of the object.

A.1.36.18. suspend()

public void suspend()
throws RemoteException, CannotSuspendException, NotRunningException, AlreadySuspendedException;

Exceptions

RemoteException if a system-level error occurs.

CannotSuspendException when the execution object cannot be suspended. For example,
an implementation of the WfM Facility might not support
suspension of a WfActivity .

NotRunningException when the object is not running.

AlreadySuspendedExcep-
tion

when the object is already suspended.

Requests enactment of an execution object to be suspended. The state is set to NotRunning-
State.SUSPENDED (or one of its substates).

A.1.36.19. terminate()

public void terminate()
throws RemoteException, CannotStopException, NotRunningException;

Exceptions

RemoteException if a system-level error occurs.

Interface WfExecutionObject

118

CannotStopException when the execution object cannot be aborted.

NotRunningException when the object is not running.

Requests enactment of an execution object to be terminated before its normal completion.

A.1.36.20. validStates()

public java.util.Collection validStates()
throws RemoteException;

Parameters

return A collection of all the valid states.

Exceptions

RemoteException If a communication error occurred.

Returns a list of all the valid states that can be reached from the current state.

A.1.36.21. whileOpen()

public WfExecutionObject.State whileOpen()
throws RemoteException;

Parameters

return the state as State object.

Exceptions

RemoteException if a system-level error occurs.

Returns the workflow state for open execution objects.

A.1.36.22. whyNotRunning()

public WfExecutionObject.State whyNotRunning()
throws RemoteException;

Parameters

return the state as State object.

Interface WfExecutionObject

119

Exceptions

RemoteException if a system-level error occurs.

Returns the workflow state for open, not running execution objects.

A.1.36.23. workflowState()

public WfExecutionObject.State workflowState()
throws RemoteException;

Parameters

return the current state .

Exceptions

RemoteException if a system-level error occurs.

Return the current state.

A.1.37. Class WfExecutionObject.ClosedState
This class defines the sub-states of State.CLOSED of a WfExecutionObject as returned by
howClosedState() .

A.1.37.1. Synopsis

public static class de.danet.an.workflow.omgcore.WfExecutionObject.ClosedState extends, de.danet.an.workflow.omgcore.WfExecutionObject.State
implements, java.io.Serializable {

// Public Static Fields

public static final WfExecutionObject.ClosedState ABORTED ;

public static final WfExecutionObject.ClosedState COMPLETED ;

public static final WfExecutionObject.ClosedState TERMINATED ;

// Protected Constructors

protected WfExecutionObject.ClosedState(String text);

// Public Methods

public WfExecutionObject.State getParent();

public WfExecutionObject.State howClosedState();

public WfExecutionObject.State whileOpenState();

Class WfExecutionObject.ClosedState

120

public WfExecutionObject.State whyNotRunningState();

public WfExecutionObject.State workflowState();

}

Direct known subclasses :
de.danet.an.workflow.api.Activity.ClosedCompletedState

Methods inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : from-
String , getParent , howClosedState , isSameOrSubState , registerState ,
textRepresentation , toString , whileOpenState , whyNotRunningState ,
workflowState

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Fields inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : CLOSED ,
OPEN

Inheritance Path. java.lang.Object-> Section A.1.40, “Class WfExecutionObject.State” [128] -> Sec-
tion A.1.37, “Class WfExecutionObject.ClosedState” [120]

A.1.37.2. WfExecutionObject.ClosedState(String)

protected WfExecutionObject.ClosedState(String text);

Parameters

text Textual representation of the state

Default constructor.

A.1.37.3. ABORTED

public static final WfExecutionObject.ClosedState ABORTED ;

Indicates that the enactment of the execution object has been aborted before normal execution. No
assumptions on the state of execution objects depending on this execution object are made when
enters this state.

A.1.37.4. COMPLETED

public static final WfExecutionObject.ClosedState COMPLETED ;

When an execution object has finished its task in the overall workflow process it enters the com-
pleted state; it is assumed that all execution objects associated with that execution object are com-
pleted when it enters this state.

A.1.37.5. TERMINATED

public static final WfExecutionObject.ClosedState TERMINATED ;

Indicates that enactment of the execution object was stopped before normal completion. It is as-

Class WfExecutionObject.ClosedState

121

sumed that all execution objects depending on this execution object (i.e., WfActivities contained in
a WfProcess or a WfProcess implementing a WfActivity) are either completed or are terminated
when it enters this state.

A.1.37.6. getParent()

public WfExecutionObject.State getParent();

Parameters

return parent in the state hierachy

Returns the parent in the state hierachy if all states defined in this class or null , if this states are at
the top level of the hierachy.

A.1.37.7. howClosedState()

public WfExecutionObject.State howClosedState();

Parameters

return the sub-state of closed state

Returns the workflow substate for closed execution objects.

A.1.37.8. whileOpenState()

public WfExecutionObject.State whileOpenState();

Parameters

return the sub-state of open state

Returns the workflow substate for open execution objects.

A.1.37.9. whyNotRunningState()

public WfExecutionObject.State whyNotRunningState();

Parameters

return the sub-state of not-running state

Returns the workflow substate for open, not running execution objects.

A.1.37.10. workflowState()

Class WfExecutionObject.ClosedState

122

public WfExecutionObject.State workflowState();

Parameters

return the workflow state

Returns the workflow state, i.e. the parent.

A.1.38. Class WfExecutionObject.NotRunningState
This class defines the sub-states of OpenState.NOT_RUNNING of a WfExecutionObject as
returned by whyNotRunningState() .

A.1.38.1. Synopsis

public static class de.danet.an.workflow.omgcore.WfExecutionObject.NotRunningState extends, de.danet.an.workflow.omgcore.WfExecutionObject.OpenState
implements, java.io.Serializable {

// Public Static Fields

public static final WfExecutionObject.NotRunningState NOT_STARTED ;

public static final WfExecutionObject.NotRunningState SUSPENDED ;

// Protected Constructors

protected WfExecutionObject.NotRunningState(String text);

// Public Methods

public WfExecutionObject.State getParent();

public WfExecutionObject.State howClosedState();

public WfExecutionObject.State whileOpenState();

public WfExecutionObject.State whyNotRunningState();

public WfExecutionObject.State workflowState();

}

Methods inherited from de.danet.an.workflow.omgcore.WfExecutionObject.OpenState : get-
Parent , howClosedState , whileOpenState , whyNotRunningState , work-
flowState

Methods inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : from-
String , isSameOrSubState , registerState , textRepresentation , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Fields inherited from de.danet.an.workflow.omgcore.WfExecutionObject.OpenState :
NOT_RUNNING , RUNNING

Fields inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : CLOSED ,

Class WfExecutionOb-
ject.NotRunningState

123

OPEN

Inheritance Path. java.lang.Object-> Section A.1.40, “Class WfExecutionObject.State” [128] -> Sec-
tion A.1.39, “Class WfExecutionObject.OpenState” [125] -> Section A.1.38, “Class WfExecutionOb-
ject.NotRunningState” [123]

A.1.38.2. WfExecutionObject.NotRunningState(String)

protected WfExecutionObject.NotRunningState(String text);

Parameters

text Textual representation of the state

Default constructor.

A.1.38.3. NOT_STARTED

public static final WfExecutionObject.NotRunningState NOT_STARTED ;

Provides a state after creation where the object is active and ready to be initialized and started.

A.1.38.4. SUSPENDED

public static final WfExecutionObject.NotRunningState SUSPENDED ;

Provides a state to temporarily pause the execution of the object. When an execution object is sus-
pended, no execution objects depending on this object may be started.

A.1.38.5. getParent()

public WfExecutionObject.State getParent();

Parameters

return parent in the state hierachy

Returns the parent in the state hierachy if all states defined in this class or null , if this states are at
the top level of the hierachy.

A.1.38.6. howClosedState()

public WfExecutionObject.State howClosedState();

Parameters

return the sub-state of closed state

Returns the workflow substate for closed execution objects.

Class WfExecutionOb-
ject.NotRunningState

124

A.1.38.7. whileOpenState()

public WfExecutionObject.State whileOpenState();

Parameters

return the sub-state of open state

Returns the workflow substate for open execution objects.

A.1.38.8. whyNotRunningState()

public WfExecutionObject.State whyNotRunningState();

Parameters

return the sub-state of not-running state

Returns the workflow substate for open, not running execution objects.

A.1.38.9. workflowState()

public WfExecutionObject.State workflowState();

Parameters

return the workflow state

Returns the workflow state, i.e. the grandparent.

A.1.39. Class WfExecutionObject.OpenState
This class defines the sub-states of State.OPEN of a WfExecutionObject as returned by
whileOpenState() .

A.1.39.1. Synopsis

public static class de.danet.an.workflow.omgcore.WfExecutionObject.OpenState extends, de.danet.an.workflow.omgcore.WfExecutionObject.State
implements, java.io.Serializable {

// Public Static Fields

public static final WfExecutionObject.OpenState NOT_RUNNING ;

public static final WfExecutionObject.OpenState RUNNING ;

// Protected Constructors

protected WfExecutionObject.OpenState(String text);

// Public Methods

Class WfExecutionObject.OpenState

125

public WfExecutionObject.State getParent();

public WfExecutionObject.State howClosedState();

public WfExecutionObject.State whileOpenState();

public WfExecutionObject.State whyNotRunningState();

public WfExecutionObject.State workflowState();

}

Direct known subclasses :
de.danet.an.workflow.omgcore.WfExecutionObject.NotRunningState

Methods inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : from-
String , getParent , howClosedState , isSameOrSubState , registerState ,
textRepresentation , toString , whileOpenState , whyNotRunningState ,
workflowState

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Fields inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : CLOSED ,
OPEN

Inheritance Path. java.lang.Object-> Section A.1.40, “Class WfExecutionObject.State” [128] -> Sec-
tion A.1.39, “Class WfExecutionObject.OpenState” [125]

A.1.39.2. WfExecutionObject.OpenState(String)

protected WfExecutionObject.OpenState(String text);

Parameters

text Textual representation of the state

Default constructor.

A.1.39.3. NOT_RUNNING

public static final WfExecutionObject.OpenState NOT_RUNNING ;

Object is active and quiescent, but ready to execute.

A.1.39.4. RUNNING

public static final WfExecutionObject.OpenState RUNNING ;

The object is active and executing in the workflow.

A.1.39.5. getParent()

Class WfExecutionObject.OpenState

126

public WfExecutionObject.State getParent();

Parameters

return parent in the state hierachy

Returns the parent in the state hierachy if all states defined in this class or null , if this states are at
the top level of the hierachy.

A.1.39.6. howClosedState()

public WfExecutionObject.State howClosedState();

Parameters

return the sub-state of closed state

Returns the workflow substate for closed execution objects.

A.1.39.7. whileOpenState()

public WfExecutionObject.State whileOpenState();

Parameters

return the sub-state of open state

Returns the workflow substate for open execution objects.

A.1.39.8. whyNotRunningState()

public WfExecutionObject.State whyNotRunningState();

Parameters

return the sub-state of not-running state

Returns the workflow substate for open, not running execution objects.

A.1.39.9. workflowState()

public WfExecutionObject.State workflowState();

Parameters

Class WfExecutionObject.OpenState

127

return the workflow state

Returns the workflow state, i.e. the parent.

A.1.40. Class WfExecutionObject.State
This class defines the top-hierachy possible states of a WfExecutionObject as returned by
workflowState() .

A.1.40.1. Synopsis

public static class de.danet.an.workflow.omgcore.WfExecutionObject.Stateimplements, java.io.Serializable {
// Public Static Fields

public static final WfExecutionObject.State CLOSED ;

public static final WfExecutionObject.State OPEN ;

// Protected Constructors

protected WfExecutionObject.State(String text);

// Public Static Methods

public static WfExecutionObject.State fromString(String text)
throws InvalidStateException;

// Public Methods

public WfExecutionObject.State getParent();

public WfExecutionObject.State howClosedState();

public boolean isSameOrSubState(WfExecutionObject.State s);

public String toString();

public WfExecutionObject.State whileOpenState();

public WfExecutionObject.State whyNotRunningState();

public WfExecutionObject.State workflowState();

// Protected Methods

protected static void registerState(WfExecutionObject.State state);

protected final String textRepresentation();

}

Direct known subclasses :
de.danet.an.workflow.omgcore.WfExecutionObject.ClosedState ,
de.danet.an.workflow.omgcore.WfExecutionObject.OpenState

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,

Class WfExecutionObject.State

128

hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.1.40, “Class WfExecutionObject.State” [128]

A.1.40.2. WfExecutionObject.State(String)

protected WfExecutionObject.State(String text);

Parameters

text Textual representation of the state

Default constructor.

A.1.40.3. CLOSED

public static final WfExecutionObject.State CLOSED ;

Reflects that the object is finished and inactive.

A.1.40.4. OPEN

public static final WfExecutionObject.State OPEN ;

To reflect that the object is active and not finished.

A.1.40.5. fromString(String)

public static WfExecutionObject.State fromString(String text)
throws InvalidStateException;

Parameters

text state name to search

return state object

Exceptions

InvalidStateException if text is not a valid state name.

Get a state by name.

A.1.40.6. getParent()

public WfExecutionObject.State getParent();

Parameters

Class WfExecutionObject.State

129

return parent in the state hierachy

Returns the parent in the state hierachy if all states defined in this class or null , if this states are at
the top level of the hierachy.

A.1.40.7. howClosedState()

public WfExecutionObject.State howClosedState();

Parameters

return the state as State object.

Returns the workflow substate for closed execution objects.

A.1.40.8. isSameOrSubState(WfExecutionObject.State)

public boolean isSameOrSubState(WfExecutionObject.State s);

Parameters

s State to compare

return true if same or sub-state false else.

Checks if this state is the same state as the given state or a substate of the given state.

A.1.40.9. registerState(WfExecutionObject.State)

protected static void registerState(WfExecutionObject.State state);

Parameters

state the State to be registered.

Register state for fromString evaluation.

Additionally introduced sub-states must call this method during their initialization if the textual rep-
resentation is to be recognized in the fromString method. It is up to the implementor of a de-
rived state to assure that the sub-state is initialized before the from String method is called.

A.1.40.10. textRepresentation()

protected final String textRepresentation();

Parameters

Class WfExecutionObject.State

130

return the textual representation

Return the textual representation of the state.

A.1.40.11. toString()

public String toString();

Parameters

return string representation of the state.

Returns the string representation of the state.

A.1.40.12. whileOpenState()

public WfExecutionObject.State whileOpenState();

Parameters

return the state as State object.

Returns the workflow substate for open execution objects.

A.1.40.13. whyNotRunningState()

public WfExecutionObject.State whyNotRunningState();

Parameters

return the state as State object.

Returns the workflow substate for open, not running execution objects.

A.1.40.14. workflowState()

public WfExecutionObject.State workflowState();

Parameters

return the state as State object.

Returns the workflow state, i.e. this object.

A.1.41. Interface WfObject

Interface WfObject

131

A tagging interface that all omgcore interfaces must extend.

A.1.41.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfObject {
}

Inheritance Path. Section A.1.41, “Interface WfObject” [131]

A.1.42. Interface WfProcess
WfProcess is the performer of a workflow request. All workflow objects that perform work im-
plement this interface. This interface allows work to proceed asynchronously while being monitored
and controlled.

A.1.42.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfProcess extends, de.danet.an.workflow.omgcore.WfExecutionObject {
// Public Methods

public java.util.Collection activitiesInState(String state)
throws RemoteException, InvalidStateException;

public WfProcessMgr manager()
throws RemoteException;

public WfRequester requester()
throws RemoteException;

public ProcessData result()
throws RemoteException, ResultNotAvailableException;

public void setRequester(WfRequester requester)
throws RemoteException, CannotChangeRequesterException;

public void start()
throws RemoteException, CannotStartException, AlreadyRunningException;

public java.util.Collection steps()
throws RemoteException;

}

Inheritance Path. Section A.1.42, “Interface WfProcess” [132]

A.1.42.2. activitiesInState(String)

public java.util.Collection activitiesInState(String state)
throws RemoteException, InvalidStateException;

Parameters

state the given state.

Interface WfProcess

132

return the collection of all WfActivities.

Exceptions

RemoteException if a system-level error occurs.

InvalidStateException if an invalid state has been specified.

Return all WfActivity objects that are in a certain state.

A.1.42.3. manager()

public WfProcessMgr manager()
throws RemoteException;

Parameters

return the associated WfProcessMgr.

Exceptions

RemoteException if a system-level error occurs.

Returns the WfProcessMgr associated with the WfProcess .

A.1.42.4. requester()

public WfRequester requester()
throws RemoteException;

Parameters

return the associated WfRequester .

Exceptions

RemoteException if a system-level error occurs.

Returns the WfRequester associated with this WfProcess .

A.1.42.5. result()

public ProcessData result()
throws RemoteException, ResultNotAvailableException;

Interface WfProcess

133

Parameters

return process data representing intermediate result.

Exceptions

RemoteException if a system-level error occurs.

ResultNotAvailableExcep-
tion

when the result cannot be obtained yet.

Returns the result produced by the WfProcess. In general the result is undefined until the process
completes, but some processes may produce intermediate results.

A.1.42.6. setRequester(WfRequester)

public void setRequester(WfRequester requester)
throws RemoteException, CannotChangeRequesterException;

Parameters

requester new WfRequester.

Exceptions

RemoteException if a system-level error occurs.

CannotChangeRequesterEx-
ception

if ressignment of the process is not supported.

Reassigns the WfProcess to another WfRequester .

A.1.42.7. start()

public void start()
throws RemoteException, CannotStartException, AlreadyRunningException;

Exceptions

RemoteException if a system-level error occurs.

CannotStartException when the process cannot be started (e.g., because it is not
properly initialized).

AlreadyRunningException when the process has already been started.

Initiate enactment of a WfProcess.

A.1.42.8. steps()

Interface WfProcess

134

public java.util.Collection steps()
throws RemoteException;

Parameters

return the collection of all the WfActivities.

Exceptions

RemoteException if a system-level error occurs.

Returns all WfActivities associated with this WfProcess .

A.1.43. Interface WfProcessMgr
A WfProcessMgr represents a template for a specific workflow process; it is used to create in-
stances of a workflow process. Logically it is the factory and locator for WfProcess instances.

A.1.43.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfProcessMgr extends, de.danet.an.workflow.omgcore.WfObject {
// Public Static Fields

public static final int DISABLED = 0;

public static final int ENABLED = 1;

// Public Methods

public String category()
throws RemoteException;

public ProcessDataInfo contextSignature()
throws RemoteException;

public WfProcess createProcess(WfRequester requester)
throws RemoteException, NotEnabledException, InvalidRequesterException, RequesterRequiredException;

public String description()
throws RemoteException;

public String name()
throws RemoteException;

public int processMgrState()
throws RemoteException;

public java.util.Collection processes()
throws RemoteException;

public ProcessDataInfo resultSignature()

Interface WfProcessMgr

135

throws RemoteException;

public void setProcessMgrState(int newState)
throws RemoteException, TransitionNotAllowedException;

public String version()
throws RemoteException;

}

Inheritance Path. Section A.1.43, “Interface WfProcessMgr” [135]

A.1.43.2. DISABLED

public static final int DISABLED = 0;

Indicates that creation of workflow processes is disabled.

A.1.43.3. ENABLED

public static final int ENABLED = 1;

Indicates that creation of workflow processes is enabled.

A.1.43.4. category()

public String category()
throws RemoteException;

Parameters

return the string of category.

Exceptions

RemoteException if a system-level error occurs.

Return the category of a process manager used for classification of process types. It is set when the
process manager is initialized and cannot be modified.

A.1.43.5. contextSignature()

public ProcessDataInfo contextSignature()
throws RemoteException;

Parameters

return the process meta information.

Interface WfProcessMgr

136

Exceptions

RemoteException if a system-level error occurs.

Returns the meta information that defines how to set the context of an instance.

A.1.43.6. createProcess(WfRequester)

public WfProcess createProcess(WfRequester requester)
throws RemoteException, NotEnabledException, InvalidRequesterException, RequesterRequiredException;

Parameters

requester the requester to create process.

return the created process.

Exceptions

RemoteException if a system-level error occurs.

NotEnabledException when the process manager is disabled.

InvalidRequesterExcep-
tion

when the process definition requires a WfRequester and
an invalid WfRequester is supplied in the parameter.

RequesterRequiredExcep-
tion

when a WfRequester is being identified that cannot be a
parent of instances of the process.

Create instances of a process and link its requester.

A.1.43.7. description()

public String description()
throws RemoteException;

Parameters

return the description.

Exceptions

RemoteException if a system-level error occurs.

Returns the description of the process manager.

A.1.43.8. name()

Interface WfProcessMgr

137

public String name()
throws RemoteException;

Parameters

return the name.

Exceptions

RemoteException if a system-level error occurs.

Returns the name of the process manager.

A.1.43.9. processes()

public java.util.Collection processes()
throws RemoteException;

Parameters

return a Collection object of WfProcess .

Exceptions

RemoteException if a system-level error occurs.

Returns a collection with WfProcess objects from this process manager.

A.1.43.10. processMgrState()

public int processMgrState()
throws RemoteException;

Parameters

return WfProcessMgr.ENABLED if creation of workflow processes
is enabled, otherwise WfProcessMgr.DISABLED.

Exceptions

RemoteException if a system-level error occurs.

Returns the state of the WfProcessMgr .

Interface WfProcessMgr

138

A.1.43.11. resultSignature()

public ProcessDataInfo resultSignature()
throws RemoteException;

Parameters

return the process meta information.

Exceptions

RemoteException if a system-level error occurs.

Returns the meta information that specifies how instances will return results.

A.1.43.12. setProcessMgrState(int)

public void setProcessMgrState(int newState)
throws RemoteException, TransitionNotAllowedException;

Parameters

newState the new state.

Exceptions

RemoteException if a system-level error occurs.

TransitionNotAllowedEx-
ception

if the transition is not allowed

Set the new state of this process manager.

A.1.43.13. version()

public String version()
throws RemoteException;

Parameters

return the version.

Exceptions

RemoteException if a system-level error occurs.

Interface WfProcessMgr

139

Return the version attribute of a process manager used to distinguish between different versions of a
process model.

A.1.44. Interface WfRequester
WfRequester is the interface that has a direct concern with the execution and results of a work-
flow process. It represents the request for some work to be done. Its performer, a WfProcess is
expected to handle its request and communicate significant status changes; in particular to inform
the requester when it has completed performing the request work. The support of WfRequester s
in a workflow engine implementation is complicated because the receiveEvent method re-
verses the client server relationship and because an object from the application space must be stored
by the server.

Implementations of WfRequester are therefore subject to the following restrictions:

• The implementation must implement <code>java.io.Serializable</code>. Make sure not to use
any attributes that are not serializable.

• In order for deserialization to work, the implementation's class file must be in the classpath of the
application server.

• The implementation must provide proper <code>equals</code> and <code>hashCode</code>
methods.

Most applications will simply use the requester provided as DefaultRequester .

A.1.44.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfRequester extends, de.danet.an.workflow.omgcore.WfObject, de.danet.an.workflow.omgcore.WfAuditHandler {
// Public Methods

public boolean isMemberOfPerformers(WfProcess member)
throws RemoteException;

public java.util.Collection performers()
throws RemoteException;

}

Inheritance Path. Section A.1.44, “Interface WfRequester” [140]

A.1.44.2. isMemberOfPerformers(WfProcess)

public boolean isMemberOfPerformers(WfProcess member)
throws RemoteException;

Parameters

member the process in question.

return true if the process is among the performers of this re-
quester.

Exceptions

Interface WfRequester

140

RemoteException if a system-level error occurs.

Check if the given process is among the performers of this requester.

A.1.44.3. performers()

public java.util.Collection performers()
throws RemoteException;

Parameters

return A collection of associated performers.

Exceptions

RemoteException if a system-level error occurs.

Return all performers associated with this requester.

A.1.45. Interface WfResource
WfResource is an abstraction that represents a person or thing that will potentially accept an as-
signment to an activity.

A.1.45.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfResource extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public boolean isMemberOfWorkItems(WfAssignment member)
throws RemoteException;

public void release(WfAssignment fromAssignment,
String releaseInfo)

throws RemoteException, NotAssignedException;

public String resourceKey()
throws RemoteException;

public String resourceName()
throws RemoteException;

public java.util.Collection workItems()
throws RemoteException;

}

Inheritance Path. Section A.1.45, “Interface WfResource” [141]

A.1.45.2. isMemberOfWorkItems(WfAssignment)

Interface WfResource

141

public boolean isMemberOfWorkItems(WfAssignment member)
throws RemoteException;

Parameters

member the given WfAssignment .

return true if the association exists.

Exceptions

RemoteException if a system-level error occurs.

Checks if a given WfAssignment is associated with this resource.

A.1.45.3. release(WfAssignment, String)

public void release(WfAssignment fromAssignment,
String releaseInfo)

throws RemoteException, NotAssignedException;

Parameters

fromAssignment the specific assignment.

releaseInfo specifies additional information on the reason for realizing
the resource as input.

Exceptions

NotAssignedException if the resource is not associated with the given assignment.

RemoteException if a system-level error occurs.

Signals to the resource that it is no longer needed for a specific assignment. It is assumed that this
operation is invoked when an assignment is deleted or when an assignment is reassigned to another
resource.

(The description from the OMG specification is a bit unclear about the nature of this method. Is it
used to signal the release, or does it cause the release, i.e. does it update the storage of assignments.
Due to the fact that this method throws NotAssignedException , which is possible only if this
method interfaces with the assignment storage, we have opted for the latter.)

A.1.45.4. resourceKey()

public String resourceKey()
throws RemoteException;

Parameters

Interface WfResource

142

return the resource key.

Exceptions

RemoteException if a system-level error occurs.

Returns the resource key. The resource key identifies a resource within a given business domain. It
is assumed that resources are defined in the same business domain as the workflow process they are
associated with.

The key is set when the object is initialized; modification of the key can be done in the context of a
resource management facility.

A.1.45.5. resourceName()

public String resourceName()
throws RemoteException;

Parameters

return the name of the resource.

Exceptions

RemoteException if a system-level error occurs.

Returns a human readable, descriptive name of the resource.

A.1.45.6. workItems()

public java.util.Collection workItems()
throws RemoteException;

Parameters

return the associated WfAssignments s.

Exceptions

RemoteException if a system-level error occurs.

This method returns the WfAssignments s associated with a resource.

A.1.46. Interface WfStateAuditEvent
A WfStateAuditEvent provides an audit record of information for a WfExecutionObject

Interface WfStateAuditEvent

143

's state change.

A.1.46.1. Synopsis

public interface de.danet.an.workflow.omgcore.WfStateAuditEvent extends, de.danet.an.workflow.omgcore.WfAuditEvent {
// Public Methods

public String newState();

public String oldState();

}

Inheritance Path. Section A.1.46, “Interface WfStateAuditEvent” [143]

A.1.46.2. newState()

public String newState();

Parameters

return the current value of the attribute.

Returns the current value of the attribute newState .

A.1.46.3. oldState()

public String oldState();

Parameters

return the current value of the attribute.

Returns the current value of the attribute oldState .

A.2. Package de.danet.an.workflow.api
This package defines the the workflow API provided by Danet's workflow component. The API ex-
tends the core API derived from the OMG "Workflow Management Facility Sepcification,
V1.2". We consider the interfaces and classes in this package (together with the interfaces and
classes in the core API) to be useable as a general Java workflow API, i.e. if there was a JSR for a
Java workflow API, we think the merger of these two packages would be a good starting point.

Trying to implement workflow clients using the OMG interface, we found that it lacks some func-
tions that are either absolutely necessary or nice to have. For some OMG interfaces we have there-
fore defined a corresponding interface that extends the OMG base interface.

We have also added some interface for areas that the OMG specification has purposely omitted from
its scope (e.g. access to process definitions).

Finally, the OMG specification has left it open how to access the root objects of type WfProcess-
Mgr . We have therefore defined a WorkflowService and its corresponding factory that
provides this access (among some other useful function).

Package de.danet.an.workflow.api

144

A.2.1. Additional Information

Since V1.0

A.2.2. Interface Activity
Interface Activity adds some functions to the OMG activity .

A.2.2.1. Synopsis

public interface de.danet.an.workflow.api.Activity extends, de.danet.an.workflow.api.ExecutionObject, de.danet.an.workflow.omgcore.WfActivity {
// Public Methods

public void abandon(String exceptionName)
throws RemoteException, TransitionNotAllowedException;

public Activity.Info activityInfo()
throws RemoteException;

public String blockActivity()
throws RemoteException;

public void changeAssignment(de.danet.an.workflow.omgcore.WfResource oldResource,
de.danet.an.workflow.omgcore.WfResource newResource)

throws RemoteException, InvalidResourceException, AlreadyAssignedException, NotAssignedException;

public boolean choose()
throws RemoteException, TransitionNotAllowedException;

public Activity.DeadlineInfo[] deadlines()
throws RemoteException;

public Activity.Implementation executor()
throws RemoteException;

public de.danet.an.workflow.omgcore.WfResource getResource(de.danet.an.workflow.omgcore.WfAssignment asnmnt)
throws RemoteException;

public String[] handledExceptions()
throws RemoteException;

public Activity.Implementation[] implementation()
throws RemoteException;

public Activity.JoinAndSplitMode joinMode()
throws RemoteException;

public java.util.List nextActivities()
throws RemoteException;

public String performer()
throws RemoteException;

Interface Activity

145

public void removeAssignment(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException, InvalidResourceException, NotAssignedException;

public Activity.JoinAndSplitMode splitMode()
throws RemoteException;

public ActivityUniqueKey uniqueKey()
throws RemoteException;

}

Inheritance Path. Section A.2.2, “Interface Activity” [145]

A.2.2.2. abandon(String)

public void abandon(String exceptionName)
throws RemoteException, TransitionNotAllowedException;

Parameters

exceptionName the name of the exception

Exceptions

RemoteException if a system-level error occurs

TransitionNotAllowedEx-
ception

if the activity is not executing a tool

Force the completion of this activity, leaving it in state "closed.completed.abandoned". Does noth-
ing if the activity is in state "closed" already or has not been started
("open.not_running.not_started").

An abandoned activity is considered to be completed under exceptional circumstances. Therefore
only transitions with conditions of type EXCEPTION or DEFAULTEXCEPTION are considered
when evaluating the set of subsequent activities. The argument is the name of the exception which
may be used to distinguish different exceptions in transition evaluation (see XPDL).

This method should be used with care. In general, exceptions have a different level of abstraction in
a workflow process description than in Java programming. The author of a workflow process should
not have to know about e.g. a "SAXException". But he may know what to do in case of a "Result-
Invalid" exception (though this kind of problem should only arise during development anyway).

This method may only be called during tool execution. Note that calling this method does not ter-
minate tool execution, i.e. the method will return. A tool agent should, however, not try to do any-
thing with the activity any more after calling this method.

A.2.2.3. activityInfo()

public Activity.Info activityInfo()
throws RemoteException;

Parameters

Interface Activity

146

return the resulting Activity.Info value

Exceptions

RemoteException if a system-level error occurs

This method returns all available information about the activity in a single operation.

A.2.2.4. blockActivity()

public String blockActivity()
throws RemoteException;

Parameters

return an identification of the block activity that caused this activity
to be instantiated or null if this activity was not instantiated
as part of an activity set

Exceptions

RemoteException if a system-level error occurs

Returns the key of the "parent" block activity. All activities implicitly created by a block activity
share the same block activity key.

Note that there need not be an activity with the returned key, as an activity set is actually a template
describing how to implement block activities. The information obtained can mainly be used to group
all activities that have been instantiated as part of an activity set.

A.2.2.5. changeAssignment(WfResource, WfResource)

public void changeAssignment(de.danet.an.workflow.omgcore.WfResource oldResource,
de.danet.an.workflow.omgcore.WfResource newResource)

throws RemoteException, InvalidResourceException, AlreadyAssignedException, NotAssignedException;

Parameters

oldResource the resource that has its assignment removed

newResource the resource to be assigned

Exceptions

RemoteException if a system-level error occurs

InvalidResourceException if the resource is invalid. As the environment is a concurrent

Interface Activity

147

multi user environment, WfResource objects may become
invalid.

AlreadyAssignedException if the assignment already exists

NotAssignedException if there is no assignment to the old resource

Change an assignment for enacting the activity. This method calls the corresponding method of the
resource assignment service and creates the appropriate audit event.

This method is intended to be used by resource assignment systems for implementing WfAssign-
ment.setAssignee . Resource assignment systems are responsible for implementing
WfAssignment and could therefore perform the reassignment directly; this would, however, leave
the generation of notifications unexecuted.

Clients should not use this method but rather call WfAssignment.setAssignee .

A.2.2.6. choose()

public boolean choose()
throws RemoteException, TransitionNotAllowedException;

Parameters

return true if the activity could be made the effectively chosen one

Exceptions

RemoteException if a system-level error occurs

TransitionNotAllowedEx-
ception

if the activity is neither running nor suspended

Makes this activity the chosen one in a set of activities started by an AND split with the "deferred
choice" option set. All other activities in the set are reset to their initial state.

If the activity does not participate in a deferred choice, this method does nothing and returns true .

A.2.2.7. deadlines()

public Activity.DeadlineInfo[] deadlines()
throws RemoteException;

Parameters

return the deadlines

Exceptions

RemoteException if a system-level error occurs

Interface Activity

148

Returns the deadlines defined for this activity.

A.2.2.8. executor()

public Activity.Implementation executor()
throws RemoteException;

Parameters

return current executor or null if no executor running

Exceptions

RemoteException if a system-level error occurs

Returns the current executor.

A.2.2.9. getResource(WfAssignment)

public de.danet.an.workflow.omgcore.WfResource getResource(de.danet.an.workflow.omgcore.WfAssignment asnmnt)
throws RemoteException;

Parameters

asnmnt the assignment

return the resource

Exceptions

RemoteException if a system-level error occurs.

Since 1.3.4

Get the resource associated with an Assignment. The method calls the corresponding method of the
resource assignment service. This method is intended to be used by resource assignment systems for
implementing WfAssignment.assignee .

Clients should not use this method but rather call WfAssignment.assignee .

A.2.2.10. handledExceptions()

public String[] handledExceptions()
throws RemoteException;

Parameters

Interface Activity

149

return handled exceptions

Exceptions

RemoteException if a system-level error occurs

Returns the names of the exceptions handled by this activity.

A.2.2.11. implementation()

public Activity.Implementation[] implementation()
throws RemoteException;

Parameters

return an array of Implementation }s or null if no implement-
ation is defined

Exceptions

RemoteException if a system-level error occurs

Returns the implementation of the activity as Implementation s.

A.2.2.12. joinMode()

public Activity.JoinAndSplitMode joinMode()
throws RemoteException;

Parameters

return join mode

Exceptions

RemoteException if a system-level error occurs

Returns the join mode.

A.2.2.13. nextActivities()

public java.util.List nextActivities()
throws RemoteException;

Parameters

Interface Activity

150

return the list of Activity objects.

Exceptions

RemoteException if a system-level error occurs

Returns the list of activities that may follow this activity, i.e. to which transitions exist.

A.2.2.14. performer()

public String performer()
throws RemoteException;

Parameters

return performer as string

Exceptions

RemoteException if a system-level error occurs

Returns the performer as string.

A.2.2.15. removeAssignment(WfResource)

public void removeAssignment(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException, InvalidResourceException, NotAssignedException;

Parameters

resource the resource whose assignment is to be canceled

Exceptions

RemoteException if a system-level error occurs

InvalidResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid.

NotAssignedException if there is no such assignment

Removes an assignment for enacting the activity. This method calls the corresponding method of the
resource assignment service and creates the appropriate audit event.

This method is intended to be used by resource management systems for implementing

Interface Activity

151

WfResource.release .

Clients should not use this method but rather call WfResource.release .

A.2.2.16. splitMode()

public Activity.JoinAndSplitMode splitMode()
throws RemoteException;

Parameters

return split mode

Exceptions

RemoteException if a system-level error occurs

Returns the split mode.

A.2.2.17. uniqueKey()

public ActivityUniqueKey uniqueKey()
throws RemoteException;

Parameters

return value of uniqueKey

Exceptions

RemoteException if a system-level error occurs

Return a unique key for the activity. (Note that the OMG interface defines the key returned by the
key() method as unique within the scope of the containing process only.)

A.2.3. Class Activity.ClosedCompletedState
This class defines the sub-states of ClosedState.COMPLETED of a WfExecutionObject .
These substates are an extention of the predefined omg states.

A.2.3.1. Synopsis

public static class de.danet.an.workflow.api.Activity.ClosedCompletedState extends, de.danet.an.workflow.omgcore.WfExecutionObject.ClosedState
implements, java.io.Serializable {

// Public Static Fields

public static final Activity.ClosedCompletedState ABANDONED ;

public static final Activity.ClosedCompletedState NORMAL ;

Class Activity.ClosedCompletedState

152

// Protected Constructors

protected Activity.ClosedCompletedState(String text);

// Public Methods

public de.danet.an.workflow.omgcore.WfExecutionObject.State getParent();

public de.danet.an.workflow.omgcore.WfExecutionObject.State howClosedState();

public de.danet.an.workflow.omgcore.WfExecutionObject.State whileOpenState();

public de.danet.an.workflow.omgcore.WfExecutionObject.State whyNotRunningState();

public de.danet.an.workflow.omgcore.WfExecutionObject.State workflowState();

}

Methods inherited from de.danet.an.workflow.omgcore.WfExecutionObject.ClosedState :
getParent , howClosedState , whileOpenState , whyNotRunningState , work-
flowState

Methods inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : from-
String , isSameOrSubState , registerState , textRepresentation , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Fields inherited from de.danet.an.workflow.omgcore.WfExecutionObject.ClosedState : ABOR-
TED , COMPLETED , TERMINATED

Fields inherited from de.danet.an.workflow.omgcore.WfExecutionObject.State : CLOSED ,
OPEN

Inheritance Path. java.lang.Object-> Section A.1.40, “Class WfExecutionObject.State” [128] ->
Section A.1.37, “Class WfExecutionObject.ClosedState” [120] -> Section A.2.3, “Class Activ-
ity.ClosedCompletedState” [152]

A.2.3.2. Activity.ClosedCompletedState(String)

protected Activity.ClosedCompletedState(String text);

Parameters

text Textual representation of the state

Default constructor.

A.2.3.3. ABANDONED

public static final Activity.ClosedCompletedState ABANDONED ;

Provides a state indicating that the activity was completed by an exception.

A.2.3.4. NORMAL

Class Activity.ClosedCompletedState

153

public static final Activity.ClosedCompletedState NORMAL ;

Provides a state indicating that the activity was completed normally.

A.2.3.5. getParent()

public de.danet.an.workflow.omgcore.WfExecutionObject.State getParent();

Parameters

return parent in the state hierachy

Returns the parent in the state hierachy if all states defined in this class or null , if this states are at
the top level of the hierachy.

A.2.3.6. howClosedState()

public de.danet.an.workflow.omgcore.WfExecutionObject.State howClosedState();

Parameters

return the closed state.

Returns the workflow substate for closed execution objects.

A.2.3.7. whileOpenState()

public de.danet.an.workflow.omgcore.WfExecutionObject.State whileOpenState();

Parameters

return the open state.

Returns the workflow substate for open execution objects.

A.2.3.8. whyNotRunningState()

public de.danet.an.workflow.omgcore.WfExecutionObject.State whyNotRunningState();

Parameters

return the why not running state.

Returns the workflow substate for open, not running execution objects.

A.2.3.9. workflowState()

Class Activity.ClosedCompletedState

154

public de.danet.an.workflow.omgcore.WfExecutionObject.State workflowState();

Parameters

return the workflow state.

Returns the workflow state, i.e. the grandparent.

A.2.4. Class Activity.DeadlineInfo
Class DeadlineInfo describes all properties of a deadline.

A.2.4.1. Synopsis

public static class de.danet.an.workflow.api.Activity.DeadlineInfoimplements, java.io.Serializable {
// Public Static Fields

public static final int ASYNCHR = 1;

public static final int STATE_ACTIVE = 2;

public static final int STATE_CANCELED = 3;

public static final int STATE_INITIAL = 0;

public static final int STATE_REACHED = 1;

public static final int SYNCHR = 2;

// Public Constructors

public Activity.DeadlineInfo(int executionMode,
String exceptionName,
String condition,
int state);

// Public Methods

public String getCondition();

public String getExceptionName();

public int getExecutionMode();

public int getState();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.4, “Class Activity.DeadlineInfo” [155]

Class Activity.DeadlineInfo

155

A.2.4.2. Activity.DeadlineInfo(int, String, String, int)

public Activity.DeadlineInfo(int executionMode,
String exceptionName,
String condition,
int state);

Parameters

executionMode the execution mode

exceptionName the exception to be thrown

condition the condition

state the current state

Creates a new DeadlineInfo instance with the given values.

A.2.4.3. ASYNCHR

public static final int ASYNCHR = 1;

Denotes asynchronous execution of the deadline.

A.2.4.4. STATE_ACTIVE

public static final int STATE_ACTIVE = 2;

Deadline is running.

A.2.4.5. STATE_CANCELED

public static final int STATE_CANCELED = 3;

Deadline has been canceled.

A.2.4.6. STATE_INITIAL

public static final int STATE_INITIAL = 0;

Deadline is in initial state.

A.2.4.7. STATE_REACHED

public static final int STATE_REACHED = 1;

Deadline has been reached.

A.2.4.8. SYNCHR

public static final int SYNCHR = 2;

Class Activity.DeadlineInfo

156

Denotes synchronous execution of the deadline.

A.2.4.9. getCondition()

public String getCondition();

Parameters

return value of Condition.

Get the value of Condition.

A.2.4.10. getExceptionName()

public String getExceptionName();

Parameters

return value of ExceptionName.

Get the value of ExceptionName.

A.2.4.11. getExecutionMode()

public int getExecutionMode();

Parameters

return value of execution.

Get the value of execution, one of ASYNCHR or SYNCHR .

A.2.4.12. getState()

public int getState();

Parameters

return value of state.

Get the value of state, one of STATE_INITIAL , STATE_REACHED or STATE_CANCELED .

A.2.5. Interface Activity.Implementation
The super interface of possible activity implementation descriptions.

Interface Activity.Implementation

157

A.2.5.1. Synopsis

public static interface de.danet.an.workflow.api.Activity.Implementation extends, java.io.Serializable {
}

Inheritance Path. Section A.2.5, “Interface Activity.Implementation” [157]

A.2.6. Class Activity.Info
Class Info combines various informational attributes about an activity in a single structure for effi-
cient retrieval.

A.2.6.1. Synopsis

public static class de.danet.an.workflow.api.Activity.Infoimplements, java.io.Serializable {
// Public Constructors

public Activity.Info(ActivityUniqueKey key,
String actName,
String actDesc,
int actPrio,
java.util.Date actLastTime,
String procName,
String procDesc);

// Public Methods

public String description();

public java.util.Date lastStateTime();

public String name();

public int priority();

public String processDescription();

public String processName();

public ActivityUniqueKey uniqueKey();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.6, “Class Activity.Info” [158]

A.2.6.2. Activity.Info(ActivityUniqueKey, String, String, int, Date,
String, String)

public Activity.Info(ActivityUniqueKey key,
String actName,
String actDesc,
int actPrio,
java.util.Date actLastTime,

Class Activity.Info

158

String procName,
String procDesc);

Parameters

key the unique key.

actName the activity name.

actDesc the activity description.

actPrio the priority of the activity.

actLastTime the date of the last state change.

procName the name of the containing process.

procDesc the description of the containing process.

Creates a new Info instance with the given values.

A.2.6.3. description()

public String description();

Parameters

return value of activityDescription.

Get the value of activityDescription.

A.2.6.4. lastStateTime()

public java.util.Date lastStateTime();

Parameters

return value of lastStateTime.

Get the value of lastStateTime.

A.2.6.5. name()

public String name();

Parameters

return value of activityName.

Class Activity.Info

159

Get the value of activityName.

A.2.6.6. priority()

public int priority();

Parameters

return value of activityPriority.

Get the value of activityPriority.

A.2.6.7. processDescription()

public String processDescription();

Parameters

return value of processDescription.

Get the value of processDescription.

A.2.6.8. processName()

public String processName();

Parameters

return value of processName.

Get the value of processName.

A.2.6.9. uniqueKey()

public ActivityUniqueKey uniqueKey();

Parameters

return value of uniqueKey.

Get the value of uniqueKey.

A.2.7. Class Activity.JoinAndSplitMode
This class defines the join and split modes for an activity.

Class Activity.JoinAndSplitMode

160

A.2.7.1. Synopsis

public static class de.danet.an.workflow.api.Activity.JoinAndSplitModeimplements, java.io.Serializable {
// Public Static Fields

public static final Activity.JoinAndSplitMode AND ;

public static final Activity.JoinAndSplitMode XOR ;

// Protected Constructors

protected Activity.JoinAndSplitMode(String text);

// Public Static Methods

public static Activity.JoinAndSplitMode fromString(String text)
throws IllegalArgumentException;

// Public Methods

public final boolean isAND();

public final boolean isXOR();

public final String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.7, “Class Activity.JoinAndSplitMode” [160]

A.2.7.2. Activity.JoinAndSplitMode(String)

protected Activity.JoinAndSplitMode(String text);

Parameters

text textual representation of the mode.

Default constructor.

A.2.7.3. AND

public static final Activity.JoinAndSplitMode AND ;

AND join or split.

A.2.7.4. XOR

public static final Activity.JoinAndSplitMode XOR ;

XOR join or split.

Class Activity.JoinAndSplitMode

161

A.2.7.5. fromString(String)

public static Activity.JoinAndSplitMode fromString(String text)
throws IllegalArgumentException;

Parameters

text mode name.

return mode object

Exceptions

IllegalArgumentException if text is not a valid mode name.

Get the join/split mode by name.

A.2.7.6. isAND()

public final boolean isAND();

Parameters

return true if the mode is "AND".

Checks if the mode is "AND".

A.2.7.7. isXOR()

public final boolean isXOR();

Parameters

return true if the mode is "XOR".

Checks if the mode is "XOR".

A.2.7.8. toString()

public final String toString();

Parameters

return mode as text

Class Activity.JoinAndSplitMode

162

Returns the mode as text.

A.2.8. Class Activity.StartFinishMode
This class defines the values for start and finish mode for an Activity .

A.2.8.1. Synopsis

public static class de.danet.an.workflow.api.Activity.StartFinishModeimplements, java.io.Serializable {
// Public Static Fields

public static final Activity.StartFinishMode AUTOMATIC ;

public static final Activity.StartFinishMode MANUAL ;

// Protected Constructors

protected Activity.StartFinishMode(String text);

// Public Static Methods

public static Activity.StartFinishMode fromString(String mode);

// Public Methods

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.8, “Class Activity.StartFinishMode” [163]

A.2.8.2. Activity.StartFinishMode(String)

protected Activity.StartFinishMode(String text);

Parameters

text textual representation of the activity mode.

Default constructor.

A.2.8.3. AUTOMATIC

public static final Activity.StartFinishMode AUTOMATIC ;

Triggered implicitly by the system.

A.2.8.4. MANUAL

public static final Activity.StartFinishMode MANUAL ;

Triggered explicitly by the user.

Class Activity.StartFinishMode

163

A.2.8.5. fromString(String)

public static Activity.StartFinishMode fromString(String mode);

Parameters

mode the mode to convert.

return the result.

Convert a string to a StartFinishMode .

A.2.8.6. toString()

public String toString();

Parameters

return mode as text

Returns the mode as text.

A.2.9. Interface Activity.SubFlowImplementation
This interface describes the implementation of an activity by a sub flow.

A.2.9.1. Synopsis

public static interface de.danet.an.workflow.api.Activity.SubFlowImplementation extends, de.danet.an.workflow.api.Activity.Implementation {
// Public Static Fields

public static final int ASYNCHR = 1;

public static final int SYNCHR = 2;

// Public Methods

public int execution();

public String packageId();

public String processId();

public String processKey();

}

Inheritance Path. Section A.2.9, “Interface Activity.SubFlowImplementation” [164]

A.2.9.2. ASYNCHR

Interface Activ-
ity.SubFlowImplementation

164

public static final int ASYNCHR = 1;

Denotes asynchronous execution of subflow.

A.2.9.3. SYNCHR

public static final int SYNCHR = 2;

Denotes synchronous execution of subflow.

A.2.9.4. execution()

public int execution();

Parameters

return either ASYNCHR or SYNCHR .

Return the execution mode.

A.2.9.5. packageId()

public String packageId();

Parameters

return value of package id.

Return the package id of the subflow. Can be used together with the processId to lookup the
process definition using ProcessDefinitionDirectory.lookupProcessDefinition
.

A.2.9.6. processId()

public String processId();

Parameters

return value of process id.

Return the process id of the subflow. Can be used together with the packageId to lookup the
process definition using ProcessDefinitionDirectory.lookupProcessDefinition
.

A.2.9.7. processKey()

public String processKey();

Interface Activ-
ity.SubFlowImplementation

165

Parameters

return the key or null if no process is running.

Return the key of the invoked process if it has been started.

A.2.10. Interface Activity.ToolImplementation
This interface describes the implementation of an activity by a tool.

A.2.10.1. Synopsis

public static interface de.danet.an.workflow.api.Activity.ToolImplementation extends, de.danet.an.workflow.api.Activity.Implementation {
// Public Methods

public String description();

public String id();

}

Inheritance Path. Section A.2.10, “Interface Activity.ToolImplementation” [166]

A.2.10.2. description()

public String description();

Parameters

return value of description.

Return the implementation description.

A.2.10.3. id()

public String id();

Parameters

return value of id.

Return the tool id. The id can be mapped to a tool definition by ProcessDefini-
tion.applicationById .

A.2.11. Class ActivityUniqueKey
This class implements a unique activity key. The OMG interface defines the key returned by the
key() method as unique within the scope of the containing process only. The key of a process in
turn is unique only among the processes with a common process manager.

Interface Activity.ToolImplementation

166

This class therefore combines the activity key, the process key and the process manager name to a
unique activity key.

A.2.11.1. Synopsis

public class de.danet.an.workflow.api.ActivityUniqueKeyimplements, java.io.Serializable {
// Public Constructors

public ActivityUniqueKey(de.danet.an.workflow.omgcore.WfActivity activity)
throws RemoteException;

public ActivityUniqueKey(String managerName,
String processKey,
String activityKey);

// Public Methods

public String activityKey();

public boolean equals(Object other);

public int hashCode();

public String managerName();

public String processKey();

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.11, “Class ActivityUniqueKey” [166]

A.2.11.2. ActivityUniqueKey(String, String, String)

public ActivityUniqueKey(String managerName,
String processKey,
String activityKey);

Parameters

managerName the process manager name.

processKey the process key.

activityKey the activity key.

Creates an instance of ActivityUniqueKey from the given partial keys.

A.2.11.3. ActivityUniqueKey(WfActivity)

Class ActivityUniqueKey

167

public ActivityUniqueKey(de.danet.an.workflow.omgcore.WfActivity activity)
throws RemoteException;

Parameters

activity the WfActivity .

Exceptions

RemoteException if a system-level error occurs.

Creates an instance of ActivityUniqueKey for the given activity.

A.2.11.4. activityKey()

public String activityKey();

Parameters

return the activity key.

Return the activity key.

A.2.11.5. equals(Object)

public boolean equals(Object other);

Parameters

other a ActivityUniqueKey value

return true if objects are equal.

Two ActivityUniqueKey s are equal, if all attributes are equal.

A.2.11.6. hashCode()

public int hashCode();

Parameters

return the hash code.

Calculate a hash code for a ActivityUniqueKey object.

Class ActivityUniqueKey

168

A.2.11.7. managerName()

public String managerName();

Parameters

return the process manager name.

Return the process manager name.

A.2.11.8. processKey()

public String processKey();

Parameters

return the process key.

Return the process key.

A.2.11.9. toString()

public String toString();

Parameters

return a string representation.

Generate a string representation for debugging purposes.

A.2.12. Exception AlreadyAssignedException
This class provides ...

A.2.12.1. Synopsis

public class de.danet.an.workflow.api.AlreadyAssignedException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public AlreadyAssignedException();

public AlreadyAssignedException(String message);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Exception AlreadyAssignedException

169

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.2.12,
“Exception AlreadyAssignedException” [169]

A.2.12.2. AlreadyAssignedException()

public AlreadyAssignedException();

Creates an instance of AlreadyAssignedException with all attributes initialized to default
values.

A.2.12.3. AlreadyAssignedException(String)

public AlreadyAssignedException(String message);

Parameters

message the message

Creates an instance of AlreadyAssignedException with the given message.

A.2.13. Interface Application
This interface defines methods to access the definition of an application that participates in a work-
flow process.

A.2.13.1. Synopsis

public interface de.danet.an.workflow.api.Application {
// Public Methods

public String description();

public String id();

}

Inheritance Path. Section A.2.13, “Interface Application” [170]

A.2.13.2. description()

public String description();

Parameters

return The description as specified in the process definition.

Returns the description of the application.

A.2.13.3. id()

Interface Application

170

public String id();

Parameters

return The id as specified in the process definition.

Returns the id of the Application.

A.2.14. Interface Batch
This interface must be implemented by classes that can be run as batch.

A.2.14.1. Synopsis

public interface de.danet.an.workflow.api.Batch {
// Public Methods

public Object execute(Batch.Context ctx)
throws InvocationTargetException;

}

Inheritance Path. Section A.2.14, “Interface Batch” [171]

A.2.14.2. execute(Batch.Context)

public Object execute(Batch.Context ctx)
throws InvocationTargetException;

Parameters

ctx the execution context

return the result as defined by the implementing class

Exceptions

InvocationTargetExcep-
tion

wraps exceptions as defined by the implementing class

Execute the batch.

A.2.15. Interface Batch.Context
This interface specifies a simple contract between a batch and its execution environment.

A.2.15.1. Synopsis

public static interface de.danet.an.workflow.api.Batch.Context {
// Public Methods

public boolean isRollbackOnly();

Interface Batch

171

}

Inheritance Path. Section A.2.15, “Interface Batch.Context” [171]

A.2.15.2. isRollbackOnly()

public boolean isRollbackOnly();

Parameters

return true if the current transaction will be rolled back.

Indicates if the transaction the batch is running in will eventually be rolled back. Continuing the ex-
ecution of a batch if this method returns true is pointless.

A.2.16. Exception CannotRemoveException
This exception is raised by an attempt to remove a WfProcess that is still in progress.

A.2.16.1. Synopsis

public class de.danet.an.workflow.api.CannotRemoveException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public CannotRemoveException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.2.16,
“Exception CannotRemoveException” [172]

A.2.16.2. CannotRemoveException(String)

public CannotRemoveException(String msg);

Parameters

msg an informational message describing the problem

Creates a new CannotRemoveException with the given message.

A.2.17. Interface Channel
This interface defines a named connection with a process that can be used to receive messages from
activities and send messages to activities.

Exception CannotRemoveException

172

Note that messages sent from the workflow engine to clients on a channel may be lost when no cli-
ent has opened the channel.

A.2.17.1. Synopsis

public interface de.danet.an.workflow.api.Channel extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public String name()
throws RemoteException;

public Process process()
throws InvalidKeyException, RemoteException;

public java.util.Map receiveMessage()
throws RemoteException;

public java.util.Map receiveMessage(long timeout)
throws RemoteException;

public void sendMessage(java.util.Map msg)
throws InvalidKeyException, InvalidDataException, RemoteException;

}

Inheritance Path. Section A.2.17, “Interface Channel” [172]

A.2.17.2. name()

public String name()
throws RemoteException;

Parameters

return the name

Exceptions

RemoteException if a system-level error occurs

Return the channel name.

A.2.17.3. process()

public Process process()
throws InvalidKeyException, RemoteException;

Parameters

return the process

Interface Channel

173

Exceptions

InvalidKeyException if the process no longer exists

RemoteException if a system-level error occurs

Return the process this channel belongs to.

A.2.17.4. receiveMessage()

public java.util.Map receiveMessage()
throws RemoteException;

Parameters

return the message or null if the process has been closed or re-
moved

Exceptions

RemoteException if a system-level error occurs

Wait for the next message from the process on this channel. The message consists of all IN or IN-
OUT parameters of the sender tool, stored in the Map object by formal parameter name.

A.2.17.5. receiveMessage(long)

public java.util.Map receiveMessage(long timeout)
throws RemoteException;

Parameters

timeout the timeout value in milliseconds. A timeout of zero never ex-
pires.

return the message or null if the process has been closed or re-
moved or the timeout expires

Exceptions

RemoteException if a system-level error occurs

Wait for the next message from the process on this channel within the specified timeout interval.
The message consists of all IN or INOUT parameters of the sender tool, stored in the Map object by
formal parameter name.

A.2.17.6. sendMessage(Map)

Interface Channel

174

public void sendMessage(java.util.Map msg)
throws InvalidKeyException, InvalidDataException, RemoteException;

Parameters

msg the message

Exceptions

InvalidKeyException if the process no longer exists

InvalidDataException if the message contains invalid data, i.e. entries that do not
match the name of a formal parameter

RemoteException if a system-level error occurs

Send a message on this channel to the process. The message will be received by an active or sub-
sequently activated receiver tool listening on this channel. If two or more receiver tools listen on the
same channel concurrently, the message delivery (only to one or to every receiver) is undefined.

The message sent is mapped to the formal OUT parameters of the receiver tool by matching the para-
meter names with the data entry names in the message.

A.2.18. Interface Configuration
Interface Configuration . Gives access to the configuration-methods.

A.2.18.1. Synopsis

public interface de.danet.an.workflow.api.Configuration extends, java.io.Serializable {
// Public Methods

public String workflowEngineInstanceKey()
throws RemoteException;

}

Inheritance Path. Section A.2.18, “Interface Configuration” [175]

A.2.18.2. workflowEngineInstanceKey()

public String workflowEngineInstanceKey()
throws RemoteException;

Parameters

return the unique instance key

Every workflow engine has a globally unique key. This key may be used in environments with sev-
eral workflow engines to uniquely identify an instance. Note that this key should be bound to the
data (state) of an engine, not to a deployment address. If an engine is moved to a different machine,
but continues using the same data (i.e. all running processes remain the same etc.) then it should still

Interface Configuration

175

provide the same instance key.

A.2.19. Class DefaultProcessData
This class extends HashMap in order to provide a default implementation of ProcessData .

A.2.19.1. Synopsis

public class de.danet.an.workflow.api.DefaultProcessData extends, java.util.HashMap
implements, de.danet.an.workflow.omgcore.ProcessData, java.io.Serializable {

// Public Constructors

public DefaultProcessData();

public DefaultProcessData(java.util.Map procData);

// Public Methods

public String toString();

}

Methods inherited from java.util.HashMap : clear , clone , containsKey , contains-
Value , entrySet , get , isEmpty , keySet , put , putAll , remove , size , values

Methods inherited from java.util.AbstractMap : equals , hashCode , toString

Methods inherited from java.lang.Object : finalize , getClass , notify , notifyAll ,
wait

Inheritance Path. java.lang.Object-> java.util.AbstractMap-> java.util.HashMap-> Section A.2.19,
“Class DefaultProcessData” [176]

A.2.19.2. DefaultProcessData()

public DefaultProcessData();

Creates an empty DefaultProcessData .

A.2.19.3. DefaultProcessData(Map)

public DefaultProcessData(java.util.Map procData);

Parameters

procData the process data that are to be placed in this DefaultPro-
cessData .

Creates a DefaultProcessData with the same mapping as the given map.

A.2.19.4. toString()

public String toString();

Parameters

Class DefaultProcessData

176

return string representation

Generate a string representation for debugging purposes.

A.2.20. Class DefaultRequester
This class provides an implementation of a WfRequester . It class may be used directly if the
events that are usually delivered to a requester are of no interest.

If events are to be processed, DefaultRequester must be subclassed with receiveEvent
overridden with the event handling code.

As an alternative to subclassing, a handler may be passed to the constructor . Events will then
be forwarded to the handler. This is convenient in situation where the implementation of
WfAuditHandler already exists and a subclass would only do the forwarding. Note that the ref-
erence to the handler is transient .

A.2.20.1. Synopsis

public class de.danet.an.workflow.api.DefaultRequesterimplements, de.danet.an.workflow.omgcore.WfRequester, java.io.Serializable {
// Public Constructors

public DefaultRequester(WorkflowService wfs)
throws RemoteException;

public DefaultRequester(WorkflowService wfs,
de.danet.an.workflow.omgcore.WfAuditHandler hdlr)

throws RemoteException;

// Protected Constructors

protected DefaultRequester(WorkflowService wfs,
boolean register)

throws RemoteException;

// Public Methods

public boolean equals(Object obj);

public int hashCode();

public boolean isMemberOfPerformers(de.danet.an.workflow.omgcore.WfProcess wfProcess)
throws RemoteException;

public java.util.Collection performers()
throws RemoteException;

public void receiveEvent(de.danet.an.workflow.omgcore.WfAuditEvent wfAuditEvent)
throws InvalidPerformerException, RemoteException;

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.20, “Class DefaultRequester” [177]

Class DefaultRequester

177

A.2.20.2. DefaultRequester(WorkflowService)

public DefaultRequester(WorkflowService wfs)
throws RemoteException;

Parameters

wfs the workflow service.

Exceptions

RemoteException if thrown during requester registration .

Creates a DefaultRequester for use with the given workflow service. The created requester
will not receive events until registered with a WorkflowService .

A.2.20.3. DefaultRequester(WorkflowService, boolean)

protected DefaultRequester(WorkflowService wfs,
boolean register)

throws RemoteException;

Parameters

wfs the workflow service.

register if true the requester will be registered at the workflow ser-
vice.

Exceptions

RemoteException if thrown during requester registration .

Creates a DefaultRequester for use with the given workflow service. The created requester is
automatically registered at the given WorkflowService .

A.2.20.4. DefaultRequester(WorkflowService, WfAuditHandler)

public DefaultRequester(WorkflowService wfs,
de.danet.an.workflow.omgcore.WfAuditHandler hdlr)

throws RemoteException;

Parameters

wfs the workflow service.

hdlr the event handler.

Class DefaultRequester

178

Exceptions

RemoteException if thrown during requester registration .

Creates a DefaultRequester for use with the given workflow service. The created requester
will forward received events to the given handler.

A.2.20.5. equals(Object)

public boolean equals(Object obj);

Parameters

obj the other object.

return true if the objects are equal.

Indicates whether some other object is "equal to" this one.

A.2.20.6. hashCode()

public int hashCode();

Parameters

return the hash code

Returns a hash code value for the object.

A.2.20.7. isMemberOfPerformers(WfProcess)

public boolean isMemberOfPerformers(de.danet.an.workflow.omgcore.WfProcess wfProcess)
throws RemoteException;

Specified by: Method isMemberOfPerformers in interface WfRequester

Parameters

member the process in question.

return true if the process is among the performers of this re-
quester.

Exceptions

RemoteException if a system-level error occurs.

Class DefaultRequester

179

Description copied from interface: <link
linkend="METHOD-DE.DANET.AN.WORKFLOW.OMGCORE.WFREQUESTER.ISMEMBEROFPE
RFORMERS-
DE.DANET.AN.WORKFLOW.OMGCORE.WFPROCESS-">isMemberOfPerformers</link>

Check if the given process is among the performers of this requester.

A.2.20.8. performers()

public java.util.Collection performers()
throws RemoteException;

Specified by: Method performers in interface WfRequester

Parameters

return A collection of associated performers.

Exceptions

RemoteException if a system-level error occurs.

Description copied from interface: <link
linkend="METHOD-DE.DANET.AN.WORKFLOW.OMGCORE.WFREQUESTER.PERFORMERS--">
performers</link>

Return all performers associated with this requester.

A.2.20.9. toString()

public String toString();

Parameters

return the string representation.

Return a string representation for debugging purposes.

A.2.21. Interface EventSubscriber
An EventSubscriber represents a connection to the workflow engine's event queue. From its
creation with WorkflowService.createEventSubscriber until its destruction with
WorkflowService.release all events from the workflow engine are delivered to the
EventSubscriber . EventSubscriber s should be released using WorkflowSer-
vice.release when no longer needed as they may consume considerable resources.

A.2.21.1. Synopsis

public interface de.danet.an.workflow.api.EventSubscriber extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public de.danet.an.workflow.omgcore.WfAuditEvent receive()

Interface EventSubscriber

180

throws IOException;

public de.danet.an.workflow.omgcore.WfAuditEvent receive(long timeout)
throws IOException;

public de.danet.an.workflow.omgcore.WfAuditEvent receiveNoWait()
throws IOException;

public void setEventHandler(de.danet.an.workflow.omgcore.WfAuditHandler handler)
throws IOException;

}

Inheritance Path. Section A.2.21, “Interface EventSubscriber” [180]

A.2.21.2. receive()

public de.danet.an.workflow.omgcore.WfAuditEvent receive()
throws IOException;

Parameters

return the audit event

Exceptions

IOException if an error occurs

Receives the next audit event. This method blocks until the next event is received.

A.2.21.3. receive(long)

public de.danet.an.workflow.omgcore.WfAuditEvent receive(long timeout)
throws IOException;

Parameters

timeout the timeout value (in milliseconds). If 0, the method blocks
until a message is received.

return the audit event or null if the timeout expires

Exceptions

IOException if an error occurs

Receives the next audit event that arrives within the specified timeout interval.

Interface EventSubscriber

181

A.2.21.4. receiveNoWait()

public de.danet.an.workflow.omgcore.WfAuditEvent receiveNoWait()
throws IOException;

Parameters

return the audit event or null if no event is available

Exceptions

IOException if an error occurs

Receives the next audit event if one is immediately available.

A.2.21.5. setEventHandler(WfAuditHandler)

public void setEventHandler(de.danet.an.workflow.omgcore.WfAuditHandler handler)
throws IOException;

Parameters

handler the event handler

Exceptions

IOException if an error occurs

Sets a handler for received events that is automatically invoked. If a handler has been set, the re-
ceive methods may not be called.

A.2.22. Interface ExecutionObject
Interface ExecutionObject extends the OMG execution object with additional methods
that allow the type-safe state class to be used to query and set state. The OMG API provides
string based methods only to enable vendors to define additional sub-states. The type-safe equival-
ent is to define new subclasses of the state classes.

A.2.22.1. Synopsis

public interface de.danet.an.workflow.api.ExecutionObject extends, de.danet.an.workflow.omgcore.WfExecutionObject {
// Public Methods

public void changeState(de.danet.an.workflow.omgcore.WfExecutionObject.State newState)
throws RemoteException, InvalidStateException, TransitionNotAllowedException;

public boolean debugEnabled()
throws RemoteException;

Interface ExecutionObject

182

public de.danet.an.workflow.omgcore.WfExecutionObject.State typedState()
throws RemoteException;

}

Inheritance Path. Section A.2.22, “Interface ExecutionObject” [182]

A.2.22.2. changeState(WfExecutionObject.State)

public void changeState(de.danet.an.workflow.omgcore.WfExecutionObject.State newState)
throws RemoteException, InvalidStateException, TransitionNotAllowedException;

Parameters

newState state to change to.

Exceptions

InvalidStateException if newState is an invalid state for the execution object.

TransitionNotAllowedEx-
ception

if the transition from the current state to newState is not al-
lowed.

RemoteException if a system-level error occurs.

Type-safe equivalent to WfExecutionObject.changeState() .

A.2.22.3. debugEnabled()

public boolean debugEnabled()
throws RemoteException;

Parameters

return true if the execution object is in debugging mode

Exceptions

RemoteException if a system-level error occurs

Checks if the execution object is in debugging mode.

A.2.22.4. typedState()

public de.danet.an.workflow.omgcore.WfExecutionObject.State typedState()
throws RemoteException;

Parameters

Interface ExecutionObject

183

return the state.

Exceptions

RemoteException if a system-level error occurs.

Type-safe equivalent to WfExecutionObject.state() .

A.2.23. Interface ExternalReference
This interface represents an ExternalReference as specified by XPDL.

A.2.23.1. Synopsis

public interface de.danet.an.workflow.api.ExternalReference extends, java.io.Serializable {
// Public Methods

public java.net.URI location();

public String namespace();

public String xref();

}

Since 1.1

Inheritance Path. Section A.2.23, “Interface ExternalReference” [184]

A.2.23.2. location()

public java.net.URI location();

Parameters

return location information

Returns the location information of the external document.

A.2.23.3. namespace()

public String namespace();

Parameters

return namespace information

Interface ExternalReference

184

Returns the scope in which the entity is defined or null if no such information is supplied.

A.2.23.4. xref()

public String xref();

Parameters

return identity of entity

Returns the identity of the entity within the external document or null if no such information is
supplied.

A.2.24. Error FactoryConfigurationError
This exception is thrown by the newInstance method of WorkflowServiceFactory .

A.2.24.1. Synopsis

public class de.danet.an.workflow.api.FactoryConfigurationError extends, java.lang.Error {
// Public Constructors

public FactoryConfigurationError();

public FactoryConfigurationError(String msg);

public FactoryConfigurationError(String msg,
Throwable cause);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Error-> Section A.2.24,
“Error FactoryConfigurationError” [185]

A.2.24.2. FactoryConfigurationError()

public FactoryConfigurationError();

Creates a new exception.

A.2.24.3. FactoryConfigurationError(String)

public FactoryConfigurationError(String msg);

Parameters

Error FactoryConfigurationError

185

msg the detail message.

Creates a new exception with the given message.

A.2.24.4. FactoryConfigurationError(String, Throwable)

public FactoryConfigurationError(String msg,
Throwable cause);

Parameters

msg the detail message.

cause the cause.

Creates a new exception with the given message and cause.

A.2.25. Class FormalParameter
This class provides a description of a formal parameter as used for workflow processes and work-
flow applications.

A.2.25.1. Synopsis

public class de.danet.an.workflow.api.FormalParameterimplements, java.io.Serializable {
// Public Constructors

public FormalParameter(String newId,
String newIndex,
FormalParameter.Mode newMode,
Object newType);

// Public Methods

public boolean equals(Object obj);

public int hashCode();

public String id();

public String index();

public FormalParameter.Mode mode();

public String toString();

public Object type();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Class FormalParameter

186

Inheritance Path. java.lang.Object-> Section A.2.25, “Class FormalParameter” [186]

A.2.25.2. FormalParameter(String, String, FormalParameter.Mode,
Object)

public FormalParameter(String newId,
String newIndex,
FormalParameter.Mode newMode,
Object newType);

Parameters

newId identifier of the formal parameter in String

newIndex index of the formal parameter in String. In the 1.iteration if
the new Index is not null, a warning will be generated.

newMode mode of this formal parameter

newType type of this formal parameter

Creates a new FormalParameter .

A.2.25.3. equals(Object)

public boolean equals(Object obj);

Parameters

obj the object to compare with.

return true if the objects are equal.

Compare two formal parameter objects.

A.2.25.4. hashCode()

public int hashCode();

Parameters

return the hash code.

Evaluate hash code.

A.2.25.5. id()

public String id();

Parameters

Class FormalParameter

187

return a String representing the id value

Return the id of the formal parameter.

A.2.25.6. index()

public String index();

Parameters

return a String representing the index value

Return the index of the formal parameter.

A.2.25.7. mode()

public FormalParameter.Mode mode();

Parameters

return the FormalParameter.Mode of the formal parameter.

Return the mode of the formal parameter.

A.2.25.8. toString()

public String toString();

Parameters

return the result.

Create string representation for debugging purposes.

A.2.25.9. type()

public Object type();

Parameters

return the type of the formal parameter.

Return the type of the formal parameter. Types are represented as defined for Process-
Mgr.contextSignature .

A.2.26. Class FormalParameter.Mode

Class FormalParameter.Mode

188

Defines a class for representing priorities in a type save way.

A.2.26.1. Synopsis

public static final class de.danet.an.workflow.api.FormalParameter.Modeimplements, java.io.Serializable {
// Public Static Fields

public static final FormalParameter.Mode IN ;

public static final FormalParameter.Mode INOUT ;

public static final FormalParameter.Mode OUT ;

// Public Static Methods

public static FormalParameter.Mode fromString(String text)
throws IllegalArgumentException;

// Public Methods

public final String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.26, “Class FormalParameter.Mode” [188]

A.2.26.2. IN

public static final FormalParameter.Mode IN ;

Mode as Input Parameter.

A.2.26.3. INOUT

public static final FormalParameter.Mode INOUT ;

Mode as input and output parameter.

A.2.26.4. OUT

public static final FormalParameter.Mode OUT ;

Mode as Output Parameter.

A.2.26.5. fromString(String)

public static FormalParameter.Mode fromString(String text)
throws IllegalArgumentException;

Parameters

text mode name to search

Class FormalParameter.Mode

189

return mode object

Exceptions

IllegalArgumentException if text is not a valid mode name.

Get a Mode by name.

A.2.26.6. toString()

public final String toString();

Parameters

return mode as text

Returns the mode as text.

A.2.27. Interface GroupResource
This interface extends the interface WfResource for resources that are groups. The distinction of
resource types is without relevance to the workflow engine, but may be used to e.g. display resource
types differently in the user interface. Resource management services are not required to make use
of this interface, they may deliver all resources as plain WfResource s. Application must therefore
be prepared to handle resources that only implement the base interface WfResource .

A.2.27.1. Synopsis

public interface de.danet.an.workflow.api.GroupResource extends, de.danet.an.workflow.omgcore.WfResource, java.io.Serializable {
}

See Also Section A.2.50, “Interface UserResource”
[240] , Section A.2.47, “Interface
RoleResource” [236]

Inheritance Path. Section A.2.27, “Interface GroupResource” [190]

A.2.28. Exception ImportException
This exception is thrown by the importProcessDefinitions method of ProcessDefin-
itionDirectory and results from collected errors.

A.2.28.1. Synopsis

public class de.danet.an.workflow.api.ImportException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public ImportException(String msg,
java.util.List prioritizedMessages);

Interface GroupResource

190

// Public Methods

public java.util.List messages();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.2.28,
“Exception ImportException” [190]

A.2.28.2. ImportException(String, List)

public ImportException(String msg,
java.util.List prioritizedMessages);

Parameters

msg the main message of the exception.

prioritizedMessages the given prioritized messages.

Construct a ImportException from a collecting error handler. The warnings, errors, fatal error
of the Exception are taken from the error handler.

A.2.28.3. messages()

public java.util.List messages();

Parameters

return list with error messages (may be empty).

Return all messages, i.e. warnings, errors and fatal errors. The value returned is a list of Priorit-
izedMessage .

A.2.29. Exception InvalidIdException
This exception is raised if an invalid id is passed to a lookup method.

A.2.29.1. Synopsis

public class de.danet.an.workflow.api.InvalidIdException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidIdException(String msg);

}

Exception InvalidIdException

191

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.2.29,
“Exception InvalidIdException” [191]

A.2.29.2. InvalidIdException(String)

public InvalidIdException(String msg);

Parameters

msg the message

Constructs a new exception with the given message. The message should at least include the invalid
id.

A.2.30. Exception InvalidKeyException
This exception is raised if an invalid key is passed to a lookup method.

A.2.30.1. Synopsis

public class de.danet.an.workflow.api.InvalidKeyException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public InvalidKeyException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.2.30,
“Exception InvalidKeyException” [192]

A.2.30.2. InvalidKeyException(String)

public InvalidKeyException(String msg);

Parameters

msg the message

Constructs a new exception with the given message. The message should at least include the invalid

Exception InvalidKeyException

192

key.

A.2.31. Class MethodInvocationBatch
This class provides a Batch implementation that executes several invocations of remote objects on
the server in a single transaction and returns the results. This class can be thought of as a "generic
DTO".

A.2.31.1. Synopsis

public class de.danet.an.workflow.api.MethodInvocationBatchimplements, de.danet.an.workflow.api.Batch, java.io.Serializable {
// Public Constructors

public MethodInvocationBatch();

public MethodInvocationBatch(boolean stopOnException);

// Public Methods

public void addInvocation(int result,
String method,
String[] argTypes,
Object[] args,
boolean discard);

public void addInvocation(Object obj,
String method,
String[] argTypes,
Object[] args);

public Object execute(Batch.Context ctx);

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.31, “Class MethodInvocationBatch” [193]

A.2.31.2. MethodInvocationBatch()

public MethodInvocationBatch();

Create a new empty method invocation batch. Equivalent to MethodInvocation-
Batch(false) .

A.2.31.3. MethodInvocationBatch(boolean)

public MethodInvocationBatch(boolean stopOnException);

Parameters

stopOnException if true execution is interrupted on the first encountered ex-

Class MethodInvocationBatch

193

ception

Create a new empty method invocation batch. The flag passed as parameter controls if an exception
stops the batch execution.

A.2.31.4. addInvocation(int, String, String[], Object[], boolean)

public void addInvocation(int result,
String method,
String[] argTypes,
Object[] args,
boolean discard);

Parameters

result relative index of the result to be used for method invovation,
i.e. -1 is the previous result.

method the method name.

argTypes the argument types as strings suitable for ClassLoad-
er.loadClass . May be null which is interpreted as "no
parameters".

args the actual arguments. May be null which is interpreted as
"no parameters".

discard if true the referenced result will be removed from the result
list.

Adds a method invocation on a previous result to the batch.

A.2.31.5. addInvocation(Object, String, String[], Object[])

public void addInvocation(Object obj,
String method,
String[] argTypes,
Object[] args);

Parameters

obj the objects whose method is to be invoked.

method the method name.

argTypes the argument types as strings suitable for ClassLoad-
er.loadClass . May be null which is interpreted as "no
parameters".

args the actual arguments. May be null which is interpreted as
"no parameters".

Adds a method invocation to the batch.

A.2.31.6. execute(Batch.Context)

Class MethodInvocationBatch

194

public Object execute(Batch.Context ctx);

Specified by: Method execute in interface Batch

Parameters

ctx the execution context.

return the execution result, which is of type Result .

Executes the registered method invocations one by one in a single transaction. Note that execution is
terminated if an invoked method sets rollback only.

A.2.32. Class MethodInvocationBatch.Result
The result of an execution of this kind of batch.

A.2.32.1. Synopsis

public class de.danet.an.workflow.api.MethodInvocationBatch.Resultimplements, java.io.Serializable {
// Public Constructors

public MethodInvocationBatch.Result(Object[] theResults,
boolean exceptionsOccured);

// Public Methods

public Exception firstException()
throws IllegalStateException;

public boolean hasExceptions();

public Object result(int i);

public java.util.Date resultAsDate(int i);

public int resultAsInt(int i);

public String resultAsString(int i);

public Object[] results();

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.32, “Class MethodInvocationBatch.Result” [195]

A.2.32.2. MethodInvocationBatch.Result(Object[], boolean)

Class MethodInvocationBatch.Result

195

public MethodInvocationBatch.Result(Object[] theResults,
boolean exceptionsOccured);

Parameters

theResults the results attribute.

exceptionsOccured the exceptions attribute.

Construct a new Result objects with the given attributes.

A.2.32.3. firstException()

public Exception firstException()
throws IllegalStateException;

Parameters

return the first exception.

Exceptions

IllegalStateException if the result includes no exceptions.

Return the first exception in the result list.

A.2.32.4. hasExceptions()

public boolean hasExceptions();

Parameters

return true if execeptions have occured.

Return true if any exceptions have occured during batch execution.

A.2.32.5. result(int)

public Object result(int i);

Parameters

i the index into the result array.

return result.

Class MethodInvocationBatch.Result

196

Returns the result with the given index.

A.2.32.6. resultAsDate(int)

public java.util.Date resultAsDate(int i);

Parameters

i the index into the result array.

return result as Date .

Returns the result with the given index as Date .

A.2.32.7. resultAsInt(int)

public int resultAsInt(int i);

Parameters

i the index into the result array.

return result as int .

Returns the result with the given index as int .

A.2.32.8. resultAsString(int)

public String resultAsString(int i);

Parameters

i the index into the result array.

return result as String .

Returns the result with the given index as String .

A.2.32.9. results()

public Object[] results();

Parameters

return the results.

The results as an array of objects. Each entry in the array corresponds to a method call and is either
a result (with java primitive types wrapped in corresponding objects) or an exception thrown by the

Class MethodInvocationBatch.Result

197

invoked method.

A.2.33. Exception NoSuchResourceException
This exception is thrown if a resource has become invalid.

A.2.33.1. Synopsis

public class de.danet.an.workflow.api.NoSuchResourceException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public NoSuchResourceException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.2.33,
“Exception NoSuchResourceException” [198]

A.2.33.2. NoSuchResourceException(String)

public NoSuchResourceException(String msg);

Parameters

msg the detail message.

Create a new exception with the given detail message.

A.2.34. Interface Participant
This interface identifies the data type "workflow participant" in a ProcessDataInfo object.

A.2.34.1. Synopsis

public interface de.danet.an.workflow.api.Participant {
// Public Methods

public String getId();

public String getName();

public Participant.ParticipantType getParticipantType();

public Object getResourceSelection();

}

Exception NoSuchResourceException

198

Inheritance Path. Section A.2.34, “Interface Participant” [198]

A.2.34.2. getId()

public String getId();

Parameters

return a String representing the id value

Get the id of the participant.

A.2.34.3. getName()

public String getName();

Parameters

return a String representing the name value

Get the name of the participant.

A.2.34.4. getParticipantType()

public Participant.ParticipantType getParticipantType();

Parameters

return a ParticipantType object representing the participant type
value

Get the type of the participant.

A.2.34.5. getResourceSelection()

public Object getResourceSelection();

Parameters

return an Object representing the resource selection value

Get the additional resource selection information passed to the constructor.

A.2.35. Class Participant.ParticipantType
This class defines the participant type for a participant.

Class Participant.ParticipantType

199

A.2.35.1. Synopsis

public static final class de.danet.an.workflow.api.Participant.ParticipantTypeimplements, java.io.Serializable {
// Public Static Fields

public static final Participant.ParticipantType HUMAN ;

public static final Participant.ParticipantType ORGANIZATIONAL_UNIT ;

public static final Participant.ParticipantType RESOURCE ;

public static final Participant.ParticipantType RESOURCE_SET ;

public static final Participant.ParticipantType ROLE ;

public static final Participant.ParticipantType SYSTEM ;

// Public Static Methods

public static Participant.ParticipantType fromString(String text)
throws IllegalArgumentException;

// Public Methods

public final boolean isHuman();

public final boolean isOrganizationUnit();

public final boolean isResource();

public final boolean isResourceSet();

public final boolean isRole();

public final boolean isSystem();

public final String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.35, “Class Participant.ParticipantType” [199]

A.2.35.2. HUMAN

public static final Participant.ParticipantType HUMAN ;

HUMAN ParticipantType.

A.2.35.3. ORGANIZATIONAL_UNIT

Class Participant.ParticipantType

200

public static final Participant.ParticipantType ORGANIZATIONAL_UNIT ;

ORGANIZATIONAL_UNIT ParticipantType.

A.2.35.4. RESOURCE

public static final Participant.ParticipantType RESOURCE ;

RESOURCE ParticipantType.

A.2.35.5. RESOURCE_SET

public static final Participant.ParticipantType RESOURCE_SET ;

RESOURCE_SET ParticipantType.

A.2.35.6. ROLE

public static final Participant.ParticipantType ROLE ;

ROLE ParticipantType.

A.2.35.7. SYSTEM

public static final Participant.ParticipantType SYSTEM ;

SYSTEM ParticipantType.

A.2.35.8. fromString(String)

public static Participant.ParticipantType fromString(String text)
throws IllegalArgumentException;

Parameters

text participant type name to search

return participant type object

Exceptions

IllegalArgumentException if text is not a valid participant type name.

Get a participant type by name.

A.2.35.9. isHuman()

public final boolean isHuman();

Parameters

Class Participant.ParticipantType

201

return true if the type is "HUMAN".

Checks if the type is "HUMAN".

A.2.35.10. isOrganizationUnit()

public final boolean isOrganizationUnit();

Parameters

return true if the type is "ORGANIZATIONAL_UNIT".

Checks if the type is "ORGANIZATIONAL_UNIT".

A.2.35.11. isResource()

public final boolean isResource();

Parameters

return true if the type is "RESOURCE".

Checks if the type is "RESOURCE".

A.2.35.12. isResourceSet()

public final boolean isResourceSet();

Parameters

return true if the type is "RESOURCE_SET".

Checks if the type is "RESOURCE_SET".

A.2.35.13. isRole()

public final boolean isRole();

Parameters

return true if the type is "ROLE".

Checks if the type is "ROLE".

A.2.35.14. isSystem()

Class Participant.ParticipantType

202

public final boolean isSystem();

Parameters

return true if the type is "SYSTEM".

Checks if the type is "SYSTEM".

A.2.35.15. toString()

public final String toString();

Parameters

return type as text

Returns the type as text.

A.2.36. Class PrioritizedMessage
This class presents a prioritized message that will be internationalized using the specified resource
bundle and the referenced entry. For details see the description of its class contructor.

A.2.36.1. Synopsis

public class de.danet.an.workflow.api.PrioritizedMessageimplements, java.io.Serializable {
// Public Constructors

public PrioritizedMessage(PrioritizedMessage.Priority priority,
String message);

public PrioritizedMessage(PrioritizedMessage.Priority priority,
String message,
Object[] data);

// Public Methods

public String message();

public String message(java.util.Locale locale);

public PrioritizedMessage.Priority priority();

public String toString();

public String unmappedMessage();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Class PrioritizedMessage

203

Inheritance Path. java.lang.Object-> Section A.2.36, “Class PrioritizedMessage” [203]

A.2.36.2. PrioritizedMessage(PrioritizedMessage.Priority, String)

public PrioritizedMessage(PrioritizedMessage.Priority priority,
String message);

Parameters

priority the priority of the given message.

message a message or a resource and key reference.

See Also message() [204]

Constructs a prioritized message. If the message has the format "
a.resource.bundle.base.name#key " it is interpreted as the base name of a
<code>ReosurceBundle</code> and the key of an entry in this resource bundle.

A.2.36.3. PrioritizedMessage(PrioritizedMessage.Priority, String,
Object[])

public PrioritizedMessage(PrioritizedMessage.Priority priority,
String message,
Object[] data);

Parameters

priority the priority of the given message.

message a message or a resource and key reference.

data additional data used when formatting the message.

See Also message() [204]

Constructs a prioritized message. If the message has the format "
a.resource.bundle.base.name#key " it is interpreted as the base name of a
<code>ReosurceBundle</code> and the key of an entry in this resource bundle.

If the parameter data is not null , the message (or the string looked up in the resource bundle)
will be fomatted using <code>MessageFormat.format</code>.

A.2.36.4. message()

public String message();

Parameters

Class PrioritizedMessage

204

return the message.

See Also message(java.util.Locale) [205]

Returns the message. If the message has the format " a.resource.bundle.base.name#key
", it will be internationalized using the specified resource bundle and the referenced entry with the
default <code>Locale</code>.

A.2.36.5. message(Locale)

public String message(java.util.Locale locale);

Parameters

locale the Locale to be used for resource bundle lookup.

return the message.

Returns the message. If the message has the format " a.resource.bundle.base.name#key
", it will be internationalized using the specified resource bundle and the referenced entry using the
given <code>Locale</code>.

A.2.36.6. priority()

public PrioritizedMessage.Priority priority();

Parameters

return the priority of the message.

Returns the priority of the message.

A.2.36.7. toString()

public String toString();

Parameters

return a string representation.

Returns a string representation of the message.

A.2.36.8. unmappedMessage()

public String unmappedMessage();

Parameters

Class PrioritizedMessage

205

return the message.

Returns the message that it is not internationalized.

A.2.37. Class PrioritizedMessage.Priority
This class represents the priority of a given message. It was taken over from
org.apache.log4j.Priority to avoid the dependence of the log4j library.

A.2.37.1. Synopsis

public static class de.danet.an.workflow.api.PrioritizedMessage.Priorityimplements, java.io.Serializable, java.lang.Comparable {
// Public Static Fields

public static final PrioritizedMessage.Priority DEBUG ;

public static final PrioritizedMessage.Priority ERROR ;

public static final PrioritizedMessage.Priority FATAL ;

public static final PrioritizedMessage.Priority INFO ;

public static final PrioritizedMessage.Priority WARN ;

// Protected Constructors

protected PrioritizedMessage.Priority(int level,
String levelStr);

// Public Methods

public int compareTo(Object other);

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.37, “Class PrioritizedMessage.Priority” [206]

A.2.37.2. PrioritizedMessage.Priority(int, String)

protected PrioritizedMessage.Priority(int level,
String levelStr);

Parameters

level the level of the priority.

levelStr the string representation of the priority.

Constructor of the priority of a message.

Class PrioritizedMessage.Priority

206

A.2.37.3. DEBUG

public static final PrioritizedMessage.Priority DEBUG ;

The DEBUG priority designates fine-grained informational events that are most useful to debug an
application.

A.2.37.4. ERROR

public static final PrioritizedMessage.Priority ERROR ;

The ERROR level designates error events that might still allow the application to continue running.

A.2.37.5. FATAL

public static final PrioritizedMessage.Priority FATAL ;

The FATAL level designates very severe error events that will presumably lead the application to
abort.

A.2.37.6. INFO

public static final PrioritizedMessage.Priority INFO ;

The INFO level designates informational messages that highlight the progress of the application at
coarse-grained level.

A.2.37.7. WARN

public static final PrioritizedMessage.Priority WARN ;

The WARN level designates potentially harmful situations.

A.2.37.8. compareTo(Object)

public int compareTo(Object other);

Specified by: Method compareTo in interface Comparable

Parameters

other priority to compare with.

return a negative integer, zero, or a positive integer as this priority is
less than, equal to, or greater than the given priority.

Implements Comparable .

A.2.37.9. toString()

public String toString();

Class PrioritizedMessage.Priority

207

Parameters

return this priority in string.

Returns the string representation of this priority.

A.2.38. Interface Process
Interface Process adds some functions to the OMG process .

A.2.38.1. Synopsis

public interface de.danet.an.workflow.api.Process extends, de.danet.an.workflow.api.ExecutionObject, de.danet.an.workflow.omgcore.WfProcess {
// Public Methods

public Activity activityByKey(String key)
throws RemoteException, InvalidKeyException;

public java.util.Date createTime()
throws RemoteException;

public ProcessDefinition processDefinition()
throws RemoteException;

public void setDebugEnabled(boolean debug)
throws RemoteException, InvalidStateException;

public java.util.List transitions()
throws RemoteException;

}

Inheritance Path. Section A.2.38, “Interface Process” [208]

A.2.38.2. activityByKey(String)

public Activity activityByKey(String key)
throws RemoteException, InvalidKeyException;

Parameters

key the key of the activity

return the activity associated with the key

Exceptions

InvalidKeyException if no activity with the given key exists

RemoteException if a system-level error occurs.

Interface Process

208

Returns the Activity with the given key. The OMG interface only defines a method for
listing all the activities associated with the process. While, of course, one could se-
lect the activity with a certain key from that list, this would be rather insufficient.

A.2.38.3. createTime()

public java.util.Date createTime()
throws RemoteException;

Parameters

return the creation time.

Exceptions

RemoteException if a system-level error occurs.

Returns the creation time of the process.

A.2.38.4. processDefinition()

public ProcessDefinition processDefinition()
throws RemoteException;

Parameters

return the representation of the process definition.

Exceptions

RemoteException if a system-level error occurs.

Returns the process definition of this process.

A.2.38.5. setDebugEnabled(boolean)

public void setDebugEnabled(boolean debug)
throws RemoteException, InvalidStateException;

Parameters

debug if the process is to be debugged

Exceptions

Interface Process

209

RemoteException if a system-level error occurs.

InvalidStateException if changing the debug mode is not allowed

Enable or disable debugging of the process. Changing the debug mode is only allowed when the
process has been started.

A.2.38.6. transitions()

public java.util.List transitions()
throws RemoteException;

Parameters

return list of transitions for this process

Exceptions

RemoteException if a system level error occurs.

Gets a list of transitions for this process.

A.2.39. Interface ProcessClosedAuditEvent
A ProcessClosedAuditEvent extends the WfStateAuditEvent . It is reported when a
process changes its state to closed . In addition to the information provided by the base WfStat-
eAuditEvent , this event provides the process' result. This makes the result available to listeners
waiting for the end of a process even in cases when a process is automatically removed after com-
pletion.

A.2.39.1. Synopsis

public interface de.danet.an.workflow.api.ProcessClosedAuditEvent extends, de.danet.an.workflow.omgcore.WfStateAuditEvent {
// Public Methods

public de.danet.an.workflow.omgcore.ProcessData result();

}

See Also result() [133]

Inheritance Path. Section A.2.39, “Interface ProcessClosedAuditEvent” [210]

A.2.39.2. result()

public de.danet.an.workflow.omgcore.ProcessData result();

Parameters

Interface ProcessClosedAuditEvent

210

return Returns the result.

A.2.40. Interface ProcessDefinition
This interface defines a process definiton.

A.2.40.1. Synopsis

public interface de.danet.an.workflow.api.ProcessDefinition {
// Public Static Fields

public static final int AUDIT_SELECTION_ALL_EVENTS = 0;

public static final int AUDIT_SELECTION_NO_EVENTS = 3;

public static final int AUDIT_SELECTION_PROCESS_CLOSED_EVENTS_ONLY = 2;

public static final int AUDIT_SELECTION_STATE_EVENTS_ONLY = 1;

public static final int REMOVE_AUTOMATIC = 1;

public static final int REMOVE_COMPLETED = 2;

public static final int REMOVE_MANUAL = 0;

// Public Methods

public Application applicationById(String id)
throws InvalidIdException;

public java.util.Collection applications();

public int auditEventSelection();

public int cleanupMode();

public de.danet.an.workflow.omgcore.ProcessDataInfo contextSignature();

public FormalParameter[] formalParameters();

public String mgrName();

public String packageId();

public String packageName();

public Participant participantById(String id)
throws InvalidIdException;

public java.util.Collection participants();

Interface ProcessDefinition

211

public ProcessDefinition.ProcessHeaderData processHeader();

public String processId();

public String processName();

public boolean removeClosedProcess();

public de.danet.an.workflow.omgcore.ProcessDataInfo resultSignature();

public boolean storeAuditEvents();

public org.jdom.Document toJDOM();

public SAXEventBuffer toSAX();

public String toXPDL();

public String version();

}

Inheritance Path. Section A.2.40, “Interface ProcessDefinition” [211]

A.2.40.2. AUDIT_SELECTION_ALL_EVENTS

public static final int AUDIT_SELECTION_ALL_EVENTS = 0;

Select all audit events to be delivered and recorded.

A.2.40.3. AUDIT_SELECTION_NO_EVENTS

public static final int AUDIT_SELECTION_NO_EVENTS = 3;

Select no audit events to be delivered and recorded.

A.2.40.4. AUDIT_SELECTION_PROCESS_CLOSED_EVENTS_ONL
Y

public static final int AUDIT_SELECTION_PROCESS_CLOSED_EVENTS_ONLY = 2;

Select process closed events for delivery and recording only.

A.2.40.5. AUDIT_SELECTION_STATE_EVENTS_ONLY

public static final int AUDIT_SELECTION_STATE_EVENTS_ONLY = 1;

Select state change events for delivery and recording only.

A.2.40.6. REMOVE_AUTOMATIC

Interface ProcessDefinition

212

public static final int REMOVE_AUTOMATIC = 1;

Remove closed processes automatically.

A.2.40.7. REMOVE_COMPLETED

public static final int REMOVE_COMPLETED = 2;

Remove closed processes automatically if closed.completed .

A.2.40.8. REMOVE_MANUAL

public static final int REMOVE_MANUAL = 0;

Remove closed processes manually.

A.2.40.9. applicationById(String)

public Application applicationById(String id)
throws InvalidIdException;

Parameters

id the application id.

return the application.

Exceptions

InvalidIdException if no application with the given id exists.

Return the application with the given id.

A.2.40.10. applications()

public java.util.Collection applications();

Parameters

return a collection of Applications .

Returns the applications defined in this process.

A.2.40.11. auditEventSelection()

public int auditEventSelection();

Parameters

Interface ProcessDefinition

213

return the filter

This method returns the selected audit events of instances of this process definition.

A.2.40.12. cleanupMode()

public int cleanupMode();

Parameters

return the cleanup mode.

This method checks if a closed process should be removed. Parse the process definition and find out
if the extendAttribute with the name of RemoveClosedProcess has the value of MANUAL , AUTO-
MATIC or COMPLETED and return the corresponding constant. Default is to remove automatically,
i.e. REMOVE_AUTOMATIC .

A.2.40.13. contextSignature()

public de.danet.an.workflow.omgcore.ProcessDataInfo contextSignature();

Parameters

return the process meta information.

See Also contextSignature() [136]

Returns the meta information that defines how to set the context for this kind of process. Equivalent
to calling contextSignature on a process manager for this kind of process.

A.2.40.14. formalParameters()

public FormalParameter[] formalParameters();

Parameters

return the process meta information. The result is never null ,
rather an array with zero element is returned.

Returns the meta information that describes the formal parameters for this kind of process.

A.2.40.15. mgrName()

public String mgrName();

Parameters

Interface ProcessDefinition

214

return process manager name.

The name of the associated process manager . While the name of a process in XPDL is just a
human readable "label", the name attribute of the process manager must be unique within agiven
business domain.

The standard implementation of ProcessDefinition derives a manager name from the pack-
age and process ids in the XPDL, separated by a slash ("/").

A.2.40.16. packageId()

public String packageId();

Parameters

return package id.

Id of the package as specified in the XPDL description.

A.2.40.17. packageName()

public String packageName();

Parameters

return package name.

Name of the package as specified in the XPDL description.

A.2.40.18. participantById(String)

public Participant participantById(String id)
throws InvalidIdException;

Parameters

id identity of the participant in string

return a Participant object

Exceptions

InvalidIdException if no participant with the given id exists.

Return the participant identified by the id.

A.2.40.19. participants()

Interface ProcessDefinition

215

public java.util.Collection participants();

Parameters

return a collection of Participants for this process.

Gets the participants for this process.

A.2.40.20. processHeader()

public ProcessDefinition.ProcessHeaderData processHeader();

Parameters

return process header data object of the process description

Returns process header data object of the process description.

A.2.40.21. processId()

public String processId();

Parameters

return process id.

Id of the process as specified in the XPDL description.

A.2.40.22. processName()

public String processName();

Parameters

return process name.

Name of the process as specified in the XPDL description.

A.2.40.23. removeClosedProcess()

public boolean removeClosedProcess();

Parameters

return true if the closed process should be removed, otherwise

Interface ProcessDefinition

216

false.

Deprecated

Use cleanupMode . For backward compatibility, this method returns true if
cleanupMode returns REMOVE_AUTOMATIC .

This method checks if the closed process should be removed. Parse the process definition and find
out if the extendAttribute with the name of RemoveClosedProcess has the value of MANUAL, then
return false; if it has the value of AUTOMATIC, then return true. Default is true.

A.2.40.24. resultSignature()

public de.danet.an.workflow.omgcore.ProcessDataInfo resultSignature();

Parameters

return the process meta information.

See Also resultSignature() [139]

Returns the meta information that describes the result for this kind of process. Equivalent to calling
resultSignature on a process manager for this kind of process.

The implementation returns all formal IN or INOUT parameters.

A.2.40.25. storeAuditEvents()

public boolean storeAuditEvents();

Parameters

return true if only state change events of the process instance are
audited.

This method reports if audit events are written to the database.

A.2.40.26. toJDOM()

public org.jdom.Document toJDOM();

Parameters

return DOM representation of the process definition

Returns the process description as XPDL JDOM tree.

A.2.40.27. toSAX()

Interface ProcessDefinition

217

public SAXEventBuffer toSAX();

Parameters

return the process definition

Since 1.2

Return the process definition as SAX event buffer.

A.2.40.28. toXPDL()

public String toXPDL();

Parameters

return the process definition

Returns the process description as XPDL textual description.

A.2.40.29. version()

public String version();

Parameters

return process defintion version.

Version of the process definition as specified in the XPDL description.

A.2.41. Interface ProcessDefini-
tion.PackageHeaderData

An interface providing the information from the package definition header section.

A.2.41.1. Synopsis

public static interface de.danet.an.workflow.api.ProcessDefinition.PackageHeaderData {
// Public Methods

public String costUnit();

public String created();

public String description();

Interface ProcessDefini-
tion.PackageHeaderData

218

public String documentation();

public String priorityUnit();

public String vendor();

public String xpdlVersion();

}

Inheritance Path. Section A.2.41, “Interface ProcessDefinition.PackageHeaderData” [218]

A.2.41.2. costUnit()

public String costUnit();

Parameters

return the cost unit.

Units used in simulation data.

A.2.41.3. created()

public String created();

Parameters

return the created time.

Creation date of package definition.

A.2.41.4. description()

public String description();

Parameters

return the description.

Short description of the package definition.

A.2.41.5. documentation()

public String documentation();

Parameters

Interface ProcessDefini-
tion.PackageHeaderData

219

return the documentation.

Operating system specific path and -filename of help file/description file.

A.2.41.6. priorityUnit()

public String priorityUnit();

Parameters

return the priority unit.

Units used in simulation data.

A.2.41.7. vendor()

public String vendor();

Parameters

return the vendor.

Defines the origin of this model definition and contains vendor's name, vendor's product name and
product's release number.

A.2.41.8. xpdlVersion()

public String xpdlVersion();

Parameters

return the version.

Version of the process definition specification.

A.2.42. Interface ProcessDefini-
tion.ProcessHeaderData

An interface providing the information from the process definition header section.

A.2.42.1. Synopsis

public static interface de.danet.an.workflow.api.ProcessDefinition.ProcessHeaderData {
// Public Methods

public String author();

public String codepage();

Interface ProcessDefini-
tion.ProcessHeaderData

220

public String countrykey();

public String created();

public String description();

public String limit();

public ProcessDefinition.PackageHeaderData packageHeader();

public String priority();

public String publicationStatus();

public java.util.List responsibles();

public String timeEstimationDuration();

public String timeEstimationWaiting();

public String timeEstimationWorking();

public String validFrom();

public String validTo();

public String version();

}

Inheritance Path. Section A.2.42, “Interface ProcessDefinition.ProcessHeaderData” [220]

A.2.42.2. author()

public String author();

Parameters

return the author.

Name of the author of this workflow process definition.

A.2.42.3. codepage()

public String codepage();

Parameters

Interface ProcessDefini-
tion.ProcessHeaderData

221

return the codepage.

Describes the codepage used for the text parts.

A.2.42.4. countrykey()

public String countrykey();

Parameters

return the country code.

Describes the country code based on ISO 3166. It could be either the three digits country code num-
ber, or the two alpha characters country codes.

A.2.42.5. created()

public String created();

Parameters

return the created information.

Dreation date of the process definition.

A.2.42.6. description()

public String description();

Parameters

return the description.

Short description of the process definition.

A.2.42.7. limit()

public String limit();

Parameters

return the limit.

Expected duration for time management purposes in units of duration unit (duration unit does not
present in this class).

Interface ProcessDefini-
tion.ProcessHeaderData

222

A.2.42.8. packageHeader()

public ProcessDefinition.PackageHeaderData packageHeader();

Parameters

return the package header.

The elements of package header.

A.2.42.9. priority()

public String priority();

Parameters

return the priority.

Priority of the process type.

A.2.42.10. publicationStatus()

public String publicationStatus();

Parameters

return the status.

Describes the status of the Workflow Process Definition.

A.2.42.11. responsibles()

public java.util.List responsibles();

Parameters

return the list of responsible Workflow participant in String.

Describes the responsible Workflow participant(s). It is assumed that the responsible is the super-
visor during the execution of the process.

A.2.42.12. timeEstimationDuration()

public String timeEstimationDuration();

Parameters

Interface ProcessDefini-
tion.ProcessHeaderData

223

return the estimated time.

Describes the amount of time the performer of the activity needs to perform the task.

A.2.42.13. timeEstimationWaiting()

public String timeEstimationWaiting();

Parameters

return the estimated time.

Describes the amount of time the performer of the activity needs to perform the task.

A.2.42.14. timeEstimationWorking()

public String timeEstimationWorking();

Parameters

return the estimated time.

Describes the amount of time the performer of the activity needs to perform the task.

A.2.42.15. validFrom()

public String validFrom();

Parameters

return the valid from date.

Date that the workflow process definition is active from.

A.2.42.16. validTo()

public String validTo();

Parameters

return the valid to date.

Date at witch the process definition becomes valid.

A.2.42.17. version()

Interface ProcessDefini-
tion.ProcessHeaderData

224

public String version();

Parameters

return the version.

Describes the version of this workflow process definition.

A.2.43. Interface ProcessDefinitionDirectory
This interface defines a process definiton directory.

A.2.43.1. Synopsis

public interface de.danet.an.workflow.api.ProcessDefinitionDirectory extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public java.util.List importProcessDefinitions(byte[] processDefinitions)
throws RemoteException, ImportException;

public java.util.List importProcessDefinitions(String processDefinitions)
throws RemoteException, ImportException;

public boolean isEnabled(String packageId,
String processId)

throws RemoteException, InvalidKeyException;

public ProcessDefinition lookupProcessDefinition(String packageId,
String processId)

throws InvalidKeyException, RemoteException;

public boolean processDefinitionExists(String packageId,
String processId)

throws RemoteException;

public java.util.Collection processDefinitions()
throws RemoteException;

public ProcessMgr processMgr(String packageId,
String processId)

throws InvalidKeyException, RemoteException;

public void removeProcessDefinition(String packageId,
String processId)

throws RemoteException, InvalidKeyException;

public void setEnabled(String packageId,
String processId,
boolean enabled)

throws RemoteException, InvalidKeyException;

}

Interface ProcessDefinitionDirectory

225

Inheritance Path. Section A.2.43, “Interface ProcessDefinitionDirectory” [225]

A.2.43.2. importProcessDefinitions(byte[])

public java.util.List importProcessDefinitions(byte[] processDefinitions)
throws RemoteException, ImportException;

Parameters

processDefinitions byte array resulting from an InputStream that describes the
process definitions.

return list of prioritized message PrioritizedMessage . This
list only includes messages of priority INFO or WARN. If
any (fatal) error has occured, an ImportException will
be thrown and the error message can be taken from there.

Exceptions

RemoteException if a system-level error occurs. The import has been aborted.

ImportException if the input is not a correct.

This operation method import new process definitions from an XPDL description. Note that import-
ing an XPDL description automatically removes any existing process definitions that have the same
package id as the imported package.

A.2.43.3. importProcessDefinitions(String)

public java.util.List importProcessDefinitions(String processDefinitions)
throws RemoteException, ImportException;

Parameters

processDefinitions document describing the process definitions.

return list of prioritized message PrioritizedMessage . This
list only includes messages of priority INFO or WARN. If
any (fatal) error has occured, an ImportException will
be thrown and the error message can be taken from there.

Exceptions

RemoteException if a system-level error occurs. The import has been aborted.

ImportException if the input is not a correct.

This operation method import new process definitions from an XPDL description.

Note that importing an XPDL description automatically removes any existing process definitions

Interface ProcessDefinitionDirectory

226

that have the same package id as the imported package.

A.2.43.4. isEnabled(String, String)

public boolean isEnabled(String packageId,
String processId)

throws RemoteException, InvalidKeyException;

Parameters

packageId Id attribute of the process package.

processId Id attribute of the process.

return if the process definition is enabled.

Exceptions

InvalidKeyException if no process definition with the given ids exists.

RemoteException if a system-level error occurs.

This operation method returns true if the process definition with the given ids is enabled.

A.2.43.5. lookupProcessDefinition(String, String)

public ProcessDefinition lookupProcessDefinition(String packageId,
String processId)

throws InvalidKeyException, RemoteException;

Parameters

packageId Id attribute of the process package.

processId Id attribute of the process.

return the found ProcessDefinition object.

Exceptions

InvalidKeyException if no process definition with the given ids exists.

RemoteException if a system-level error occurs.

This method delivers the process definition for the given ids. If no process definition with the ids
exist, it throws an IllegalArgumentException .

A.2.43.6. processDefinitionExists(String, String)

public boolean processDefinitionExists(String packageId,

Interface ProcessDefinitionDirectory

227

String processId)
throws RemoteException;

Parameters

packageId Id attribute of the process package.

processId Id attribute of the process.

return true if a process definition with the given id exists.

Exceptions

RemoteException if a system-level error occurs.

This method checks if a process definiton with the given ids exists.

A.2.43.7. processDefinitions()

public java.util.Collection processDefinitions()
throws RemoteException;

Parameters

return collection

Exceptions

RemoteException if a system-level error occurs.

This operation method delivers a collection of all defined process definitions. The elements of the
list are of the type ProcessDefinition

A.2.43.8. processMgr(String, String)

public ProcessMgr processMgr(String packageId,
String processId)

throws InvalidKeyException, RemoteException;

Parameters

packageId Id attribute of the process package.

processId Id attribute of the process.

return the process manager for the process type.

Interface ProcessDefinitionDirectory

228

Exceptions

InvalidKeyException if not process definition with the given ids exists.

RemoteException if a system-level error occurs.

This method delivers the process manager for the process definition with the given ids.

A.2.43.9. removeProcessDefinition(String, String)

public void removeProcessDefinition(String packageId,
String processId)

throws RemoteException, InvalidKeyException;

Parameters

packageId Id attribute of the process package.

processId Id attribute of the process.

Exceptions

RemoteException if a system-level error occurs.

InvalidKeyException if packageId or processId are (formally) invalid ids.

This operation method removes a process definition with the given ids from the database. If called
for a definition that does not exist, it does nothing.

A.2.43.10. setEnabled(String, String, boolean)

public void setEnabled(String packageId,
String processId,
boolean enabled)

throws RemoteException, InvalidKeyException;

Parameters

packageId Id attribute of the process package.

processId Id attribute of the process.

enabled enable the process definition or not.

Exceptions

InvalidKeyException if no process definition with the given ids exists.

RemoteException if a system-level error occurs.

Interface ProcessDefinitionDirectory

229

This operation method set the process definition with the given ids as enabled or disabled.

A.2.44. Interface ProcessDirectory
Client interface for the process directory.

A.2.44.1. Synopsis

public interface de.danet.an.workflow.api.ProcessDirectory extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public Activity lookupActivity(ActivityUniqueKey key)
throws InvalidKeyException, RemoteException;

public Activity.Info lookupActivityInfo(ActivityUniqueKey key)
throws InvalidKeyException, RemoteException;

public Process lookupProcess(String processMgrName,
String processKey)

throws InvalidKeyException, RemoteException;

public java.util.Collection processMgrNames()
throws RemoteException;

public java.util.Collection processNames()
throws RemoteException;

public java.util.Collection processes()
throws RemoteException;

public RangeAccess processes(query.FilterCriterion filter,
query.SortCriterion order)

throws RemoteException;

public void removeProcess(de.danet.an.workflow.omgcore.WfProcess process)
throws RemoteException, CannotRemoveException;

}

Inheritance Path. Section A.2.44, “Interface ProcessDirectory” [230]

A.2.44.2. lookupActivity(ActivityUniqueKey)

public Activity lookupActivity(ActivityUniqueKey key)
throws InvalidKeyException, RemoteException;

Parameters

key denotes the activity to be looked up.

return the corresponding Activity value

Exceptions

Interface ProcessDirectory

230

RemoteException if a system-level error occurs.

InvalidKeyException if the activity specified by key cannot be found.

Ejb.interface-method view-type="remote"

This method returns the activity identified be the given unique key.

A.2.44.3. lookupActivityInfo(ActivityUniqueKey)

public Activity.Info lookupActivityInfo(ActivityUniqueKey key)
throws InvalidKeyException, RemoteException;

Parameters

key denotes the activity to be looked up.

return the corresponding Activity.Info value

Exceptions

InvalidKeyException if the activity specified by key cannot be found.

RemoteException if a system-level error occurs.

This method finds the activity identified be the given unique key and returns all available informa-
tion about it. This is a shortcut for first looking up the activity and then retrieving the "essential" in-
formation about it.

A.2.44.4. lookupProcess(String, String)

public Process lookupProcess(String processMgrName,
String processKey)

throws InvalidKeyException, RemoteException;

Parameters

processMgrName type of the given process.

processKey key of the process.

return the process found.

Exceptions

InvalidKeyException if no such process can be found.

RemoteException if a system-level error occurs.

Interface ProcessDirectory

231

This method finds the process identified by the given type and key.

A.2.44.5. processes()

public java.util.Collection processes()
throws RemoteException;

Parameters

return collection of Process

Exceptions

RemoteException if a system-level error occurs.

This operation method delivers a collection of all known processes. The objects of the collection are
remote interface of type Process .

A.2.44.6. processes(FilterCriterion, SortCriterion)

public RangeAccess processes(query.FilterCriterion filter,
query.SortCriterion order)

throws RemoteException;

Parameters

filter a filter for the result

order the sort order for the result

return access object to Processes

Exceptions

RemoteException if a system-level error occurs.

This method returns an access object to an ordered set of processes. The objects in the result are re-
mote interface of type Process .

A.2.44.7. processMgrNames()

public java.util.Collection processMgrNames()
throws RemoteException;

Parameters

return collection of String

Interface ProcessDirectory

232

Exceptions

RemoteException if a system-level error occurs.

This operation method returns a collection of the defined process types as Strings.

A.2.44.8. processNames()

public java.util.Collection processNames()
throws RemoteException;

Parameters

return collection of process names as String objects or an empty col-
lection if no processes are found.

Exceptions

RemoteException if a system-level error occurs.

This operation method delivers a collection of process names of created processes or an empty col-
lection if no processes are found.

A.2.44.9. removeProcess(WfProcess)

public void removeProcess(de.danet.an.workflow.omgcore.WfProcess process)
throws RemoteException, CannotRemoveException;

Parameters

process the process to remove.

Exceptions

RemoteException if a system-level error occurs.

CannotRemoveException if the process cannot be removed, because it is still in pro-
gress.

Removes the given process. The process can be removed, only if it is in state "closed" or "not star-
ted".

A.2.45. Interface ProcessMgr
Interface ProcessMgr adds some functions to the OMG process manager .

Interface ProcessMgr

233

The meta information returned by contextSignature and resultSignature defined in
WfProcessMgr uses Java classes to represents primitive types, as specified for Process-
DataInfo . In addition the type of a data item can be indicated as

org.w3c.dom.Element.clas
s

denotes XML with unknown structure. Values of this type are
represented as instances of SAXEventBuffer .

an instance of SAXEventBuffer denotes XML with the known structure represented by the
XML in the event buffer. Values of this type are represented
as instances of SAXEventBuffer .

an instance of ExternalRefer-
ence

denotes the type as specified in the process definition. If a
Java type is specified as fully qualified Java class name in the
localtion attribute, "java:" is prepended as protocol and values
are of the specified type. Else values of this type are represen-
ted as instances of SAXEventBuffer .

A.2.45.1. Synopsis

public interface de.danet.an.workflow.api.ProcessMgr extends, de.danet.an.workflow.omgcore.WfProcessMgr {
// Public Methods

public java.util.Collection findByDataItem(String itemName,
String itemValue)

throws RemoteException;

public Process processByKey(String key)
throws RemoteException, InvalidKeyException;

}

Inheritance Path. Section A.2.45, “Interface ProcessMgr” [233]

A.2.45.2. findByDataItem(String, String)

public java.util.Collection findByDataItem(String itemName,
String itemValue)

throws RemoteException;

Parameters

itemName the name of the process data item

itemValue the value of the process data item

return the collection of processes

Exceptions

RemoteException if a system-level error occurs

Returns all Process es that have a given value in a particular process data item. Note that this
method may only be used for data items of type string.

Interface ProcessMgr

234

A.2.45.3. processByKey(String)

public Process processByKey(String key)
throws RemoteException, InvalidKeyException;

Parameters

key the key of the process

return the process associated with the key

Exceptions

InvalidKeyException if no process with the given key exists

RemoteException if a system-level error occurs

Returns the Process with the given key. The OMG interface only defines a method for
listing all processes associated with a process manager. While, of course, one could se-
lect the process with a certain key from that list, this would be rather inefficient.

A.2.46. Interface RangeAccess
This interface defines paginated access to data.

A.2.46.1. Synopsis

public interface de.danet.an.workflow.api.RangeAccess {
// Public Methods

public long itemCount()
throws RemoteException;

public java.util.List items(long start,
long end)

throws RemoteException;

}

Inheritance Path. Section A.2.46, “Interface RangeAccess” [235]

A.2.46.2. itemCount()

public long itemCount()
throws RemoteException;

Parameters

return the number of items

Interface RangeAccess

235

Exceptions

RemoteException if a system-level error occurs.

Return the number of items in the underlying list.

A.2.46.3. items(long, long)

public java.util.List items(long start,
long end)

throws RemoteException;

Parameters

start the start index (zero based)

end the end index

return the selected items

Exceptions

RemoteException if a system-level error occurs.

Return the subset of items from start to end .

A.2.47. Interface RoleResource
This interface extends the interface WfResource for resources that are roles. The distinction of re-
source types is without relevance to the workflow engine, but may be used to e.g. display resource
types differently in the user interface. Resource management services are not required to make use
of this interface, they may deliver all resources as plain WfResource s. Application must therefore
be prepared to handle resources that only implement the base interface WfResource .

A.2.47.1. Synopsis

public interface de.danet.an.workflow.api.RoleResource extends, de.danet.an.workflow.omgcore.WfResource, java.io.Serializable {
}

See Also Section A.2.50, “Interface UserResource”
[240] , Section A.2.27, “Interface
GroupResource” [190]

Inheritance Path. Section A.2.47, “Interface RoleResource” [236]

A.2.48. Interface SAXEventBuffer
This interface is implemented by classes that can provide XML content by emitting SAX events.

Applications that use XML at their interfaces can sometimes not avoid using XML like data struc-

Interface RoleResource

236

tures for internal data representation. Holding this data as XML is not very time efficient, because it
must be parsed in order to be processed (although parsing time for XML is often overestimated).

Holding the data in either W3C DOM or JDOM representations is not very memory efficient. De-
pending on the implementation, DOM representations use a factor of 6 to 10 compared with the file
space of the same description.

A SAX event buffer is a compromise. It stores the events generated by a SAX parser using as little
space as possible while providing the data very quickly to a content Handler.

A.2.48.1. Synopsis

public interface de.danet.an.workflow.api.SAXEventBuffer {
// Public Methods

public void emit(org.xml.sax.ContentHandler contentHandler)
throws SAXException;

}

Inheritance Path. Section A.2.48, “Interface SAXEventBuffer” [236]

A.2.48.2. emit(ContentHandler)

public void emit(org.xml.sax.ContentHandler contentHandler)
throws SAXException;

Parameters

contentHandler the content handler that is to receive the events.

Exceptions

SAXException any SAX exception, possibly wrapping another exception.

Emits the events to the given ContentHandler .

A.2.49. Interface Transition
Represents a transition between two activities.

Methods of this interface do not throw RemoteException s as they are read-only and the data is
immutable and simple.

A.2.49.1. Synopsis

public interface de.danet.an.workflow.api.Transition {
// Public Static Fields

public static final int COND_TYPE_CONDITION = 1;

public static final int COND_TYPE_DEFAULTEXCEPTION = 4;

public static final int COND_TYPE_EXCEPTION = 3;

Interface Transition

237

public static final int COND_TYPE_OTHERWISE = 2;

// Public Methods

public String condition();

public int conditionType();

public Activity from();

public String group();

public String id();

public int order();

public Activity to();

}

Inheritance Path. Section A.2.49, “Interface Transition” [237]

A.2.49.2. COND_TYPE_CONDITION

public static final int COND_TYPE_CONDITION = 1;

Condition type "condition".

A.2.49.3. COND_TYPE_DEFAULTEXCEPTION

public static final int COND_TYPE_DEFAULTEXCEPTION = 4;

Condition type "default exception".

A.2.49.4. COND_TYPE_EXCEPTION

public static final int COND_TYPE_EXCEPTION = 3;

Condition type "exception".

A.2.49.5. COND_TYPE_OTHERWISE

public static final int COND_TYPE_OTHERWISE = 2;

Condition type "OTHERWISE".

A.2.49.6. condition()

public String condition();

Parameters

Interface Transition

238

return the condition of this transition

Returns the condition associated with this transition.

A.2.49.7. conditionType()

public int conditionType();

Parameters

return type of the condition of this transition

Returns the type of the condition associated with this transition.

A.2.49.8. from()

public Activity from();

Parameters

return the source activity

Returns the "From" activity of this transition.

A.2.49.9. group()

public String group();

Parameters

return the transition group

Return the identifier of the transition group this transition belongs to.

A.2.49.10. id()

public String id();

Parameters

return the id

Returns the id of this transition.

A.2.49.11. order()

Interface Transition

239

public int order();

Parameters

return the priority

Return the priority of this transition. The priority determines the sequence in which transitions from
activties with XOR split are evaluated.

A.2.49.12. to()

public Activity to();

Parameters

return the destination activity

Returns the "To" activity of this transition.

A.2.50. Interface UserResource
This interface extends the interface WfResource for resources that are users. The distinction of re-
source types is without relevance to the workflow engine, but may be used to e.g. display resource
types differently in the user interface. Resource management services are not required to make use
of this interface, they may deliver all resources as plain WfResource s. Application must therefore
be prepared to handle resources that only implement the base interface WfResource .

A.2.50.1. Synopsis

public interface de.danet.an.workflow.api.UserResource extends, de.danet.an.workflow.omgcore.WfResource, java.io.Serializable {
}

See Also Section A.2.27, “Interface GroupResource”
[190] , Section A.2.47, “Interface
RoleResource” [236]

Inheritance Path. Section A.2.50, “Interface UserResource” [240]

A.2.51. Interface WorkflowService
This interface defines the methods provided by the workflow engine.

A.2.51.1. Synopsis

public interface de.danet.an.workflow.api.WorkflowService extends, de.danet.an.workflow.omgcore.WfObject {
// Public Methods

public de.danet.an.workflow.omgcore.WfResource asResource(java.security.Principal principal)
throws RemoteException, InvalidKeyException;

public java.util.Collection authorizers(de.danet.an.workflow.omgcore.WfResource resource)

Interface UserResource

240

throws RemoteException;

public java.security.Principal caller()
throws RemoteException;

public Configuration configuration()
throws RemoteException;

public EventSubscriber createEventSubscriber()
throws IOException;

public EventSubscriber createEventSubscriber(String processKey,
String eventTypes)

throws IOException;

public void doFinish(de.danet.an.workflow.omgcore.WfActivity act,
de.danet.an.workflow.omgcore.ProcessData result)

throws InvalidDataException, CannotCompleteException, RemoteException;

public de.danet.an.workflow.omgcore.WfObject eventReceiver(de.danet.an.workflow.omgcore.WfAuditHandler handler)
throws RemoteException;

public Object executeBatch(Batch batch)
throws RemoteException, InvocationTargetException;

public Channel getChannel(de.danet.an.workflow.omgcore.WfProcess process,
String channelName)

throws RemoteException;

public Channel getChannel(de.danet.an.workflow.omgcore.WfProcess process,
String channelName,
boolean sendOnly)

throws RemoteException;

public java.util.Collection knownResources()
throws RemoteException;

public ProcessDefinitionDirectory processDefinitionDirectory()
throws RemoteException;

public ProcessDirectory processDirectory()
throws RemoteException;

public void registerRequester(de.danet.an.workflow.omgcore.WfRequester requester)
throws RemoteException;

public void release(de.danet.an.workflow.omgcore.WfObject obj);

public java.util.Collection requestedBy(de.danet.an.workflow.omgcore.WfRequester req)
throws RemoteException;

public de.danet.an.workflow.omgcore.WfResource resourceByKey(String key)
throws InvalidKeyException, RemoteException;

Interface WorkflowService

241

public java.util.Map serviceProperties()
throws RemoteException;

}

Inheritance Path. Section A.2.51, “Interface WorkflowService” [240]

A.2.51.2. asResource(Principal)

public de.danet.an.workflow.omgcore.WfResource asResource(java.security.Principal principal)
throws RemoteException, InvalidKeyException;

Parameters

principal the principal.

return a WfResource object corresponding to the given principal.

Exceptions

InvalidKeyException if a resource with the given principal can't be found.

RemoteException if a system-level error occurs.

Since 1.2

Given a principal, return the workflow resource associated with this principal. This method is usu-
ally used to get a WfResource object corresponding to the current user. The WfResource object
can subsequently be used to e.g. determine the current user's worklist.

Calls to this method are typically delegated to ResourceAssignmentService.asResource
. Note that since implementation of this method by the resource assignment service is optional, call-
ing this method may result in an UnsupportedOperationException .

A.2.51.3. authorizers(WfResource)

public java.util.Collection authorizers(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException;

Parameters

resource the resource.

return a collection of WfResource objects, not including re-
source

Exceptions

RemoteException if a system-level error occurs.

Interface WorkflowService

242

Since 1.2

Given a WfResource object , return the collection of resources this resource is authorized for.

This method usually returns all groups the resource is a member of and all roles assigned to the re-
source.

Calls to this method are typically delegated to ResourceAssignmentSer-
vice.authorizers . Note that since implementation of this method by the resource assign-
ment service is optional, calling this method may result in an UnsupportedOperationExcep-
tion .

A.2.51.4. caller()

public java.security.Principal caller()
throws RemoteException;

Parameters

return the caller principal.

See Also asResource(java.security.Principal) [242]

Ejb.interface-method view-type="remote"

Ejb.transaction type="Supports"

Returns the currently (i.e. for this call) authenticated user as a Principal .

In an environment where authentication is performed by the container, it may not be easy to discov-
er this information. Although most container environments provide a possibility to access the cur-
rent principal, there may be a mapping between the client's representation of the currently authentic-
ated user and the workflow engine's (i.e. server's) representation.

A.2.51.5. configuration()

public Configuration configuration()
throws RemoteException;

Parameters

return the configuration.

Exceptions

RemoteException if a system-level error occurs.

Return the workflow engine configuration.

A.2.51.6. createEventSubscriber()

Interface WorkflowService

243

public EventSubscriber createEventSubscriber()
throws IOException;

Parameters

return the subscriber

Exceptions

IOException if an error occurs.

Returns an event subscriber. Event subscriber should be released using release when no longer
needed as they may consume considerable resources.

A.2.51.7. createEventSubscriber(String, String)

public EventSubscriber createEventSubscriber(String processKey,
String eventTypes)

throws IOException;

Parameters

processKey if not null , receive events for the given process only

eventTypes if not null , receive events of the given types only. Types
are specified as a whitespace, comma or semicolon separated
list of event names. See WfAuditEvent for a list of valid
event names.

return the subscriber

Exceptions

IOException if an error occurs.

Returns an event subscriber that receives events as specified by the parameters. Event subscriber
should be released using release when no longer needed as they may consume considerable re-
sources.

A.2.51.8. doFinish(WfActivity, ProcessData)

public void doFinish(de.danet.an.workflow.omgcore.WfActivity act,
de.danet.an.workflow.omgcore.ProcessData result)

throws InvalidDataException, CannotCompleteException, RemoteException;

Parameters

Interface WorkflowService

244

act the Activity .

result the tool's result data. If null do not call setResult .

Exceptions

InvalidDataException see WfActivity.setResult(...)

CannotCompleteException see WfActivity.complete()

RemoteException if a system-level error occurs.

Since 1.1

Set a result and complete an activity in a new transaction. This is usually required to implement
tools with reasonable behaviour since a failure when calling setResult or complete on an
activity may not cause the tool invocation to be repeated (as would be the case when simply calling
setResult or complete due to the transaction rollback associated with an exception).

As an example consider an InvalidDataException . This usually occurs when the result con-
tains an item that is not a declared process data field. Ususally, repeating the tool invocation will not
solve this problem.

A.2.51.9. eventReceiver(WfAuditHandler)

public de.danet.an.workflow.omgcore.WfObject eventReceiver(de.danet.an.workflow.omgcore.WfAuditHandler handler)
throws RemoteException;

Parameters

handler the handler for received events.

return the receiver.

Exceptions

RemoteException if a system-level error occurs.

Deprecated

since version 1.3.2. Use createEventSubscriber instead and set a handler for the
object thus obtained

Returns an event receiver. The events received will be handled by the given handler. Event receivers
should be released using release when no longer needed as they may consume considerable re-
sources.

A.2.51.10. executeBatch(Batch)

public Object executeBatch(Batch batch)
throws RemoteException, InvocationTargetException;

Interface WorkflowService

245

Parameters

batch the batch to be executed.

return the result returned by Batch.execute .

Exceptions

RemoteException if a system-level error occurs.

InvocationTargetExcep-
tion

if thrown by Batch.execute

Execute a batch in the context of the workflow service i.e. on the server.

We do not want to define a specific mechanism for implementing the remote invocation mechanism
used with the workflow API. Yet it is obvious that any implementation can profit from the possibil-
ity to execute several actions as one call to the server.

A.2.51.11. getChannel(WfProcess, String)

public Channel getChannel(de.danet.an.workflow.omgcore.WfProcess process,
String channelName)

throws RemoteException;

Parameters

process the process to communicate with

channelName the channel name

return the channel

Exceptions

RemoteException if a system-level error occurs.

Return a named communication channel to the given process. The channel may be used to send
messages to the receiver tool and receive messages from the sender tool.

Channels should be released when no longer needed to free resources.

A.2.51.12. getChannel(WfProcess, String, boolean)

public Channel getChannel(de.danet.an.workflow.omgcore.WfProcess process,
String channelName,
boolean sendOnly)

throws RemoteException;

Parameters

Interface WorkflowService

246

process the process to communicate with

channelName the channel name

sendOnly if set, returns a channel that may only be used for sending
messages. This may save some resources.

return the channel

Exceptions

RemoteException if a system-level error occurs.

Return a named communication channel to the given process. The channel may be used to send
messages to the receiver tool and optionally receive messages from the sender tool.

Channels should be released when no longer needed to free resources.

A.2.51.13. knownResources()

public java.util.Collection knownResources()
throws RemoteException;

Parameters

return the collection of the known resources to the ras (instances of
WfResource).

Exceptions

RemoteException if a system-level error occurs.

Since 1.2

See Also ResourceAssignmentService#knownResources

Returns at least the collection of all the workflow resources that have been assigned work items, but
optionally it can return the additional workflow resources that are known to the resource assignment
service. Calls to this method are typically delegated to ResourceAssignmentSer-
vice.knownResources . Note that since implementation of this method by the resource as-
signment service is optional, calling this method may result in an UnsupportedOperationEx-
ception .

A.2.51.14. processDefinitionDirectory()

public ProcessDefinitionDirectory processDefinitionDirectory()
throws RemoteException;

Parameters

Interface WorkflowService

247

return the process definition directory.

Exceptions

RemoteException if a system-level error occurs.

Return the process definition directory of the workflow service.

A.2.51.15. processDirectory()

public ProcessDirectory processDirectory()
throws RemoteException;

Parameters

return the process directory.

Exceptions

RemoteException if a system-level error occurs.

Return the process directory of the workflow service.

A.2.51.16. registerRequester(WfRequester)

public void registerRequester(de.danet.an.workflow.omgcore.WfRequester requester)
throws RemoteException;

Parameters

requester the requester to be registered.

Exceptions

RemoteException if a system-level error occurs.

Register a WfRequester . Registered requesters' receiveEvent methods will be called for
their performers. Note that a requester must be registered before it is used for process creation. Else
events may be lost.

A.2.51.17. release(WfObject)

public void release(de.danet.an.workflow.omgcore.WfObject obj);

Parameters

Interface WorkflowService

248

obj the object which is no longer used.

Release an object obtained from the workflow service immediately instead of waiting for it to be
automatically released. This may be called to optimize resource utilization.

We do not want to define a specific mechanism for implementing the remote invocation mechanism
used with the workflow API. Therefore, we cannot demand that each object defines a method to re-
lease resources (like e.g. CORBA's release). This method knows about the implementation specifics
and acts appropriately.

A.2.51.18. requestedBy(WfRequester)

public java.util.Collection requestedBy(de.danet.an.workflow.omgcore.WfRequester req)
throws RemoteException;

Parameters

req the requester.

return the processes created with the given requester.

Exceptions

RemoteException if a system-level error occurs.

Return the processes requested by the given requester. This is a helper method intended to be used
when implementing a WfRequester . Applications should use WfRe-
quester.performers() instead.

A.2.51.19. resourceByKey(String)

public de.danet.an.workflow.omgcore.WfResource resourceByKey(String key)
throws InvalidKeyException, RemoteException;

Parameters

key the key.

return a WfResource object corresponding to the given key.

Exceptions

InvalidKeyException if the resource with the given key can't be found. As the en-
vironment is a concurrent multi user environment,
WfResource objects (and keys obtained from
WfResource objects) may become invalid.

RemoteException if a system-level error occurs.

Interface WorkflowService

249

Since 1.2

See Also ResourceAssignmentService#resourceByKey

Given the key of a WfResource (obtained with resourceKey()), return the workflow re-
source associated with this key.

Calls to this method are typically delegated to ResourceAssignmentSer-
vice.resourceByKey . Note that since implementation of this method by the resource assign-
ment service is optional, calling this method may result in an UnsupportedOperationExcep-
tion .

A.2.51.20. serviceProperties()

public java.util.Map serviceProperties()
throws RemoteException;

Parameters

return the service properties

Exceptions

RemoteException if a system-level error occurs

Returns the properties that uniquely decribe the workflow service in the current environment.

WorkflowService does not implement Serializable because implementations of this class
may have attributes that e.g. include network connections to the server and may thus not be serializ-
able. Nevertheless it should be possible to obtain some unique reference to a workflow service and
to restore this service without having to "manually" collect the (implementation dependant!) proper-
ties set for WorkflowServiceFactory before the call to newInstance .

This methods therefore returns a set of relevant properties that will restore this workflow service
when set as properties of WorkflowServiceFactory in the same or an equivalent environment
before newInstance is called. The properties returned by this method are, of course, based on the
properties in effect when the WorkflowService was initially created.

Note the restriction "same or equivalent environment" in the previous paragraph. One of the expli-
citly mentioned properties of the WorkflowServiceFactory (in a J2EE based implementation)
is the InitialContext used. If not set explicitly, the default initial context may be specified by
something like " localhost:1099 ". While the properties returned by serviceProperties
will include this property of the connection to the JNDI provider, using the properties in a different
JVM on a different machine may result in a different workflow service (or no workflow service at
all) because a different JNDI server is accessed. The impossibility to transfer all relevant informa-
tion between JVM's under all circumstances (InitialContext is not serializable as may be
some other crucial information in an implementation based on some other technology than J2EE)
has prevented us from demanding serializability for WorkflowService . The requirement to ob-
tain the service information explicitly and to create a new instance should result in some awareness
of the problems.

A.2.52. Class WorkflowServiceFactory
This class provides a factory API that enables clients to obtain a workflow service facility.

Class WorkflowServiceFactory

250

A.2.52.1. Synopsis

public abstract class de.danet.an.workflow.api.WorkflowServiceFactory {
// Protected Constructors

protected WorkflowServiceFactory();

// Public Static Methods

public static WorkflowServiceFactory newInstance()
throws FactoryConfigurationError;

// Public Methods

public abstract WorkflowService newWorkflowService()
throws FactoryConfigurationError;

public void setProperties(java.util.Map props);

public void setProperty(String name,
Object value);

// Protected Methods

protected java.util.Map getProperties();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.2.52, “Class WorkflowServiceFactory” [250]

A.2.52.2. WorkflowServiceFactory()

protected WorkflowServiceFactory();

Constructor. Must be overridden with a parameterless public constructor by derived class.

A.2.52.3. getProperties()

protected java.util.Map getProperties();

Parameters

return the defined properties

Used by derived classes to access the properties.

A.2.52.4. newInstance()

public static WorkflowServiceFactory newInstance()
throws FactoryConfigurationError;

Parameters

Class WorkflowServiceFactory

251

return an instance of the WorkflowServiceFactory .

Exceptions

FactoryConfigurationErr-
or

if a factory instance can't be created.

Obtain a new instance of a WorkflowServiceFactory . This static method creates a new fact-
ory instance. The method uses the following ordered lookup procedure to determine the Work-
flowServiceFactory implementation class to load:

• If an initial naming context is available, look for a a classname in
java:comp/env/de.danet.an.workflow.api.WorkflowServiceFactory . The
configuration for a class as workflow service factory thus looks like:

<env-entry>
<description>Configure the workflow service factory</description>
<env-entry-name>de.danet.an.workflow.api.WorkflowServiceFactory</env-entry-\

name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

FactoryImplementationClass
</env-entry-value>
</env-entry>

Note that this environment entry must be inserted in the ejb-jar.xml or web.xml for every
EJB resp. servlet that calls the newInstance method of WorkflowServiceFactory .

• Use the services API (as detailed in the JAR specification), if available, to determine the class-
name. The Services API will look for a classname in the file META-
INF/services/de.danet.an.workflow.api.WorkflowServiceFactory . in jars
available to the runtime.

Note that the specified workflow service factory may need additional configuration parameters.

A.2.52.5. newWorkflowService()

public abstract WorkflowService newWorkflowService()
throws FactoryConfigurationError;

Parameters

return the workflow service.

Exceptions

FactoryConfigurationErr-
or

if not all required resources can be obtained.

Creates a new instance of a WorkflowService .

This API does not specify how a workflow service factory or workflow service should be imple-

Class WorkflowServiceFactory

252

mented. If, however, the implementation is J2EE/EJB based, the following additional rules apply to
achieve common bahaviour for J2EE based implementations.

In the J2EE environment, clients usually obtain the connection to a server from a directory service
represented by an <code>InitialContext</code> instance. This instance need not be the default ini-
tial context available to the client (think of a servlet running in a servlet container that wants to ac-
cess the workflow engine running in an application server on a different machine).

In an environment that uses an <code>InitialContext</code> to obtain the connection to the server
(as described above), the following ordered lookup procedure must be implemented to determine
this initial context.

• If the property " javax.naming.InitialContext " has been set, use it as initial context. if
property " javax.naming.InitialContext.Environment " has been set, use it to ob-
tain the initial context (see setProperty .

• If a default InitialContext is available during the execution of newInstance (i.e. " new
InitialContext() succeeds), and entries
java:comp/env/de.danet.an.workflow.api.WorkflowService.NAMING_CON
TEXT_FACTORY and
java:comp/env/de.danet.an.workflow.api.WorkflowService.NAMING_CON
TEXT_URL exist, use them to obtain the initial context.

• If defined, execute vendor specific procedures to obtain an initial context.

• If a default InitialContext is available during the execution of newInstance use it (i.e.
do not try to obtain another initial context (this is the common situation where a servlet based cli-
ent and the workflow engine run in one application server).

A.2.52.6. setProperties(Map)

public void setProperties(java.util.Map props);

Parameters

props the properties to be set

A convenience method that sets all properties in the Map.

A.2.52.7. setProperty(String, Object)

public void setProperty(String name,
Object value);

Parameters

name the name of the property

value the value of the property

Sets a property which is passed to the WorkflowService produced by this factory.

Valid properties generally depend on the underlying implementation. There are, however, a few ex-
ceptions.

Class WorkflowServiceFactory

253

If the workflow service implementation is based on the J2EE environment, clients derive the con-
nection to a server from an <code>InitialContext</code>. There are cases when the user wants or
needs to override the initial context used by the workflow service implementation. It is therefore
defined that setting the property " javax.naming.InitialContext " to a value of type
<code>Context</code> overrides any default method used by the workflow service implementation
to obtain the initial context.

As an alternative, the property " javax.naming.InitialContext.Environment " may be
set to a Hashtable that contains the environment to be used when creating an InitialCon-
text .

Subsequent versions of this interface may define additional common properties. We therefore re-
commended to use "fully qulified" (i.e. package style) names for properties that are specific to a
workflow service implementation.

A.3. Package de.danet.an.workflow.spis.aii
This package defines the application invocation interface used by the workflow package to invoke
tool agents that control applications.

Java classes that are to be used as tool agents must implement the interface ToolAgent . Tool
agents are declared in a workflow using the application tag in the XPDL. This declaration is
associated with the implementation class of ToolAgent using an extension. The extension syntax
supported allows to specify the Java class to use and additional properties of the tool agent (see the
User Manual for details).

Note that a tool agent can be implemented with full functionallity based on the tool agent interface
only. The remainder of this package description explains how tool agent implementation may be
simplified and how the performance of tool agent invocations may be improved. As with the cli-
ent API , we have tried to keep this extended interface as independant of the implementation
framework (J2EE) as possible. However, this attempt is limited by requirements imposed by trans-
action handling. While the interfaces could be kept clean of dependencies on J2EE interfaces or
classes, their usage pattern is partially motivated by EJB transaction semantics.

From the workflow engine's point of view, tool agent invocation is asynchronous, i.e. it does not ex-
pect a result from the invoke method. The invoked application must at some point in time call
WfActivity.setResult and WfActivity.complete to signal completion of its work.
Although the tool agent model assumes that this is done "later" (e.g. by the application process),
these calls may also be made in the implementation of the invoke method, thus effectively com-
bining the tool agent with the application that it controls (making the tool agent a tool).

If you try to call setResult and complete in the invoke method of your tool implementation,
you'll sooner or later notice that these methods (being remote calls) may throw RemoteExcep-
tion s, indicating some temporary failure. If you do not handle these exceptions, they will be
handled by the workflow engine and your tool will simply be re-invoked. If, however, your invoke
method is "expensive" or has side effects, you may not want it to be re-executed because of a tem-
porary failure during setResult or complete .

Consequently, you put a while loop around these calls, repeating them until they run without a Re-
moteException . Regrettably, this is where EJB semantics come in. While the repeat pattern
works in a stand-alone EJB client, it won't work here because invoke is called in the context of an
EJB method and the RemoteException from setResult or complete is noticed by the EJB
container, and the complete tool agent invocation transaction will be rolled back. So you have to ex-
ecute the calls to setResult and complete in a new transaction. This is what ToolAgent-
Context.finishActivity has been defined for. This method calls setResult and com-
plete in a new transaction (and repeats the calls until no RemoteException is thrown). If you
want to use this method (or another method from the tool agent context), your tool agent must im-
plement ContextRequester in order to receive the context before invoke is called.

Having a closer look at transactions, there is a drawback to the solution described above. If we look
at open transactions, we find that there is one transaction handling the tool invocation; this has been
suspended for a new transaction that executes the actual tool agent invocation (this must be done in

Package de.danet.an.workflow.spis.aii

254

its own transaction, else the workflow engine cannot terminate an activity if an exception is thrown
by the tool agent as, again, the invoking transaction would be marked for rollback by the application
server). By calling finishActivity during invoke , the transaction executing the tool invoca-
tion will also be suspended in favour of the transaction that finishes the activity. This situation may,
under certain circumstances lead to deadlocks.

To avoid these "excessive" nested transaction suspends, the calls to setResult and complete
should better be done after tool invocation by the the same transaction that has invoked the tool.
Tools (i.e. tool agents that want to return a result and complete the activity during invoke) should
therefore implement ResultProvider . This allows the tool to simply leave the result evaluated
during invoke in an attribute from where it will be retrieved after invoke by the workflow en-
gine. The workflow engine then calls setResult and complete on the activity. Besides avoid-
ing transaction problems, usage of ResultProvider actually simplifies the tool implementation.

A.3.1. Additional Information

Since V1.0

A.3.2. Exception ApplicationNotStoppedException
This exception is thrown by a ToolAgent if it cannot terminate the execution of a running
application. It may not be thrown if the activity passed to terminate is unknown (i.e. the tool
agent was never invoked for the activity or processing the activity has already completed).

A.3.2.1. Synopsis

public class de.danet.an.workflow.spis.aii.ApplicationNotStoppedException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public ApplicationNotStoppedException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.3.2,
“Exception ApplicationNotStoppedException” [255]

A.3.2.2. ApplicationNotStoppedException(String)

public ApplicationNotStoppedException(String msg);

Parameters

msg the detail message.

Creates a new exception with the given message.

Additional Information

255

A.3.3. Exception CannotExecuteException
This exception is thrown by a ToolAgent if it cannot execute a given activity.

As of version 1.3.2, this exception can be used as a wrapper for an exception that caused the tool
failure. The wrapped exception can be mapped to a process level exception. See ExceptionMap-
pingProvider and the user manual for details.

A.3.3.1. Synopsis

public class de.danet.an.workflow.spis.aii.CannotExecuteException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public CannotExecuteException(String msg);

public CannotExecuteException(String msg,
Throwable cause);

// Public Methods

public String toString();

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.3.3,
“Exception CannotExecuteException” [256]

A.3.3.2. CannotExecuteException(String)

public CannotExecuteException(String msg);

Parameters

msg the detail message.

Creates a new exception with the given message.

A.3.3.3. CannotExecuteException(String, Throwable)

public CannotExecuteException(String msg,
Throwable cause);

Parameters

msg the detail message

cause the cause

Exception CannotExecuteException

256

Creates a new exception with the given message and cause.

A.3.4. Interface ContextRequester
This interface marks a ToolAgent as a requester of a ToolAgentContext . If a tool agent
implements this interface, the setContext method will be called before the tool is invoked (i.e.
before method invoke is called).

A.3.4.1. Synopsis

public interface de.danet.an.workflow.spis.aii.ContextRequester {
// Public Methods

public void setToolAgentContext(ToolAgentContext context);

}

Since 1.2

Inheritance Path. Section A.3.4, “Interface ContextRequester” [257]

A.3.4.2. setToolAgentContext(ToolAgentContext)

public void setToolAgentContext(ToolAgentContext context);

Parameters

context the engine context

Makes an engine context available to the tool agent.

A.3.5. Interface ExceptionMappingProvider
This interface must be implemented by ToolAgent s that want the workflow engine to map the
causes of CannotExecuteExceptions to process exceptions that cause the current activity to
be abandoned. This state change will then be handled by special transitions in the process descrip-
tion.

The mappings provided by a tool can always be extended or restricted by the application definition
in the process description. See the user manual for details.

A.3.5.1. Synopsis

public interface de.danet.an.workflow.spis.aii.ExceptionMappingProvider {
// Public Methods

public java.util.Collection exceptionMappings();

}

See Also abandon(java.lang.String) [146]

Inheritance Path. Section A.3.5, “Interface ExceptionMappingProvider” [257]

Interface ContextRequester

257

A.3.5.2. exceptionMappings()

public java.util.Collection exceptionMappings();

Parameters

return the mappings

Return the collection of mappings predefined by this tool.

A.3.6. Class ExceptionMappingPro-
vider.ExceptionMapping

Define a single exception mapping.

A.3.6.1. Synopsis

public static class de.danet.an.workflow.spis.aii.ExceptionMappingProvider.ExceptionMappingimplements, java.io.Serializable {
// Public Constructors

public ExceptionMappingProvider.ExceptionMapping(Class javaException);

public ExceptionMappingProvider.ExceptionMapping(Class javaException,
String processException);

public ExceptionMappingProvider.ExceptionMapping(Class javaException,
String processException,
boolean suspend);

// Public Methods

public Class getJavaException();

public String getProcessException();

public boolean getSuspendActivity();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.3.6, “Class ExceptionMappingPro-
vider.ExceptionMapping” [258]

A.3.6.2. ExceptionMappingProvider.ExceptionMapping(Class)

public ExceptionMappingProvider.ExceptionMapping(Class javaException);

Parameters

Class ExceptionMappingPro-
vider.ExceptionMapping

258

javaException the Java exception

processException the process exception

Create a new mapping. If the tool throws a CannotExecuteException with a Java exception
of the given class (or derived from the given class) as cause, then the invoking activity is suspended.

A.3.6.3. ExceptionMappingProvider.ExceptionMapping(Class,
String)

public ExceptionMappingProvider.ExceptionMapping(Class javaException,
String processException);

Parameters

javaException the Java exception

processException the process exception

Create a new mapping. If the tool throws a CannotExecuteException with a Java exception
of the given class (or derived from the given class) as cause, then this Java exception is mapped to
the given process exception.

A.3.6.4. ExceptionMappingProvider.ExceptionMapping(Class,
String, boolean)

public ExceptionMappingProvider.ExceptionMapping(Class javaException,
String processException,
boolean suspend);

Parameters

javaException the Java exception

processException the process exception

suspend if true the invoking activity is suspended

Create a new mapping. If the tool throws a CannotExecuteException with a Java exception
of the given class (or derived from the given class) as cause, then the invoking activity is suspended.

A.3.6.5. getJavaException()

public Class getJavaException();

Parameters

return value of javaException.

Get the value of javaException.

Class ExceptionMappingPro-
vider.ExceptionMapping

259

A.3.6.6. getProcessException()

public String getProcessException();

Parameters

return value of processException.

Get the value of processException.

A.3.6.7. getSuspendActivity()

public boolean getSuspendActivity();

Parameters

return Returns true if the invoking activity is to be suspended in
response to the exception.

A.3.7. Interface ExecutionModeProvider
This interface can be implemented by ToolAgents that provide information about their preferred
execution mode.

Note that if a tool agent implements this interface, the mode returned by executionMode over-
rides any settings in XPDL.

A.3.7.1. Synopsis

public interface de.danet.an.workflow.spis.aii.ExecutionModeProvider {
// Public Static Fields

public static final int ASYNCHR = 1;

public static final int SYNCHR = 2;

// Public Methods

public int executionMode();

}

Deprecated

As of version 1.2, there are no different execution modes any more.

Inheritance Path. Section A.3.7, “Interface ExecutionModeProvider” [260]

A.3.7.2. ASYNCHR

public static final int ASYNCHR = 1;

Interface ExecutionModeProvider

260

Indicates that the tool is to be executed asynchronously with respect to state evaluation (see user
manual for details).

A.3.7.3. SYNCHR

public static final int SYNCHR = 2;

Indicates that the tool is to be executed synchronously with respect to state evaluation (see user
manual for details).

A.3.7.4. executionMode()

public int executionMode();

Parameters

return one of ASYNCHR or SYNCHR

Returns the preferred execution mode of the tools.

A.3.8. Interface ResultProvider
This interface marks a ToolAgent as provider of a result during invoke .

A.3.8.1. Synopsis

public interface de.danet.an.workflow.spis.aii.ResultProvider {
// Public Methods

public Object result();

}

Since 1.1

See Also de.danet.an.workflow.spis.aii [254]

Inheritance Path. Section A.3.8, “Interface ResultProvider” [261]

A.3.8.2. result()

public Object result();

Parameters

return the result data as a <code>Map</code> of formal parameter
names and values or null if the invocation does not return
any data. As special case, an instance of ExceptionRes-
ult may be returned if the activity is to be abandoned.

Return the result evaluated during invoke . The method will only be called once after each in-

Interface ResultProvider

261

voke, i.e. the attribute holding the result may be cleared in this method to allow early garbage col-
lection.

Note that since a tool agent implementation must be thread safe, the result evaluated during in-
voke must be kept in a ThreadLocal attribute.

A.3.9. Class ResultProvider.ExceptionResult
A special kind of result that may be returned by result . It causes the activity to be abandoned
and the exception name used in the constructor to be signaled to the workflow engine.

A.3.9.1. Synopsis

public static class de.danet.an.workflow.spis.aii.ResultProvider.ExceptionResultimplements, java.io.Serializable {
// Public Constructors

public ResultProvider.ExceptionResult(String exceptionName);

public ResultProvider.ExceptionResult(String exceptionName,
boolean suspendActivity);

// Public Methods

public String exceptionName();

public boolean suspendActivity();

public String toString();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

See Also abandon(java.lang.String) [146]

Inheritance Path. java.lang.Object-> Section A.3.9, “Class ResultProvider.ExceptionResult” [262]

A.3.9.2. ResultProvider.ExceptionResult(String)

public ResultProvider.ExceptionResult(String exceptionName);

Parameters

exceptionName the name of the exception to be signaled

May be used by a tool agent implementation to create a special result that causes the activity to be
abandoned, and the exception with the given name to be signaled to the workflow engine for trans-
ition evaluation.

A.3.9.3. ResultProvider.ExceptionResult(String, boolean)

public ResultProvider.ExceptionResult(String exceptionName,
boolean suspendActivity);

Class ResultProvider.ExceptionResult

262

Parameters

exceptionName the name of the exception to be signaled

suspendActivity if true suspend the invoking activity

May be used by a tool agent implementation to create a special result that causes the activity to be
abandoned, and the exception with the given name to be signaled to the workflow engine for trans-
ition evaluation. In addition, the invoking activity may be suspended.

A.3.9.4. exceptionName()

public String exceptionName();

Parameters

return the exception name

Return the exception name passed to the constructor.

A.3.9.5. suspendActivity()

public boolean suspendActivity();

Parameters

return the suspend activity flag

Return the suspend activity flag passed to the constructor.

A.3.10. Interface ToolAgent
This interface is used to control applications that execute work items. An application may imple-
ment this interface directly (it is "workflow aware"). Usually, however, this interface will be imple-
mented by some adapter class that controls the application, and thus acts as an agent for the applica-
tion.

An application is declared to participate in a workflow by the application tag in the XPDL.
This declaration is associated with the implementation class of ToolAgent using an extension.
The extension syntax supported allows to specify properties of the tool agent (see the User Manual
for details).

An implementation of ToolAgent must be aware that several application invocations may be per-
formed using the same instance of the class implementing ToolAgent . This implies that imple-
mentations must be thread-safe.

By default, the invoke method has full access to the activity as specified by the activity in-
terface . Implementations that require long term storage of the activity must be aware that the
activity is passed as an interface to a remote object and therefore unsuitable for long term persist-
ence. Tool agents should persist the activity's unique key instead of the activity. The activity may
later be retrieved from the key using ProcessDirectory.lookupActivity (obtaining the
process directory from the WorkflowService .

Interface ToolAgent

263

A.3.10.1. Synopsis

public interface de.danet.an.workflow.spis.aii.ToolAgent {
// Public Methods

public void invoke(de.danet.an.workflow.api.Activity activity,
de.danet.an.workflow.api.FormalParameter[] formalParameters,
java.util.Map actualParameters)

throws RemoteException, CannotExecuteException;

public void terminate(de.danet.an.workflow.api.Activity activity)
throws ApplicationNotStoppedException, RemoteException;

}

See Also de.danet.an.workflow.spis.aii [254]

Inheritance Path. Section A.3.10, “Interface ToolAgent” [263]

A.3.10.2. invoke(Activity, FormalParameter[], Map)

public void invoke(de.danet.an.workflow.api.Activity activity,
de.danet.an.workflow.api.FormalParameter[] formalParameters,
java.util.Map actualParameters)

throws RemoteException, CannotExecuteException;

Parameters

activity the activity to be executed. The supplied object must be seri-
alizable in order to support applications running as servers

formalParameters the formal parameter definition as specified in the process
definition. May be used e.g. by generic applications to adapt
to specific formal parameter lists

actualParameters the actual parameters of the application invocation. There is
an entry in the map for every formal parameter using the id as
key in the map. OUT parameters are initialized to zero. The
map and the objects contained in the map must be serializable
in order to support applications running as servers.

Exceptions

RemoteException if a temporary problem occurs and the workflow engine
should retry the tool invocation (usually thrown when a dead-
lock situation occurs while accessing the activity).

CannotExecuteException if thrown, causes the activity to be terminated unless a map-
ping to a process exception is defined for the cause of the
CannotExecuteException . If such a mapping is
defined, the activity is abandoned. See the user manual for
details.

Invoke an application on the given activity.

Interface ToolAgent

264

A.3.10.3. terminate(Activity)

public void terminate(de.danet.an.workflow.api.Activity activity)
throws ApplicationNotStoppedException, RemoteException;

Parameters

activity the activity to be canceled. The supplied object must be seri-
alizable in order to support applications running as servers.

Exceptions

ApplicationNotStoppedEx-
ception

if execution cannot be terminated (see ApplicationNot-
StoppedException).

RemoteException if a temporary problem occurs and the workflow engine
should retry the tool termination

Terminates execution of the given activity. If the activity has been terminated already, the method
should do nothing (i.e. under certain conditions this method may be called more than once for a giv-
en activity).

Only the activity's methods key and uniqueKey should be used in an implementation of this
method. Else, depending on the application server and database configuration, deadlocks may occur.

Up to version 1.3 this method has been called by the workflow engine when processing an invoked
tool's call of WfActivity.complete() . The reasoning has been that the engine cannot be
sure that complete() is called by the tool that has previously been invoked. (To ensure this, the
engine would have to pass some token to the tool during invocation and the tool would have to pass
this back to the engine when calling complete() . Such a procedure is, however, not defined by
the OMG API.) By invoking terminate() on the currently running tool when processing com-
plete() , the engine tried to make sure that at least the invoked tool is terminated if some im-
poster calls complete() instead of the invoked tool.

The overlapping of the tool processing the completion and the invocation of terminate() on the
tool has, however, turned out to cause various problems with respect to transactions if the tool uses a
database. Therefore, this procedure has been abandoned. Note that this change does not formally
change the API as there has never been a contract about terminate() being called as part of pro-
cessing complete() . The subject has been explained extensively only to provide an explanation
if someone observes this change of behaviour.

A.3.11. Interface ToolAgentContext
This interface defines methods of the workflow engine that are available to a tool agent. An agent
implementation that wants to use these methods must implement the ContextRequester inter-
face.

A.3.11.1. Synopsis

public interface de.danet.an.workflow.spis.aii.ToolAgentContext extends, java.io.Serializable {
// Public Methods

public void abandonActivity(ResultProvider.ExceptionResult result)
throws TransitionNotAllowedException;

Interface ToolAgentContext

265

public void abandonActivity(String exception)
throws TransitionNotAllowedException;

public String applicationId();

public void finishActivity(java.util.Map result)
throws InvalidDataException, CannotCompleteException;

public de.danet.an.workflow.api.Activity lookupActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException, RemoteException;

}

Since 1.2

Inheritance Path. Section A.3.11, “Interface ToolAgentContext” [265]

A.3.11.2. abandonActivity(ResultProvider.ExceptionResult)

public void abandonActivity(ResultProvider.ExceptionResult result)
throws TransitionNotAllowedException;

Parameters

result the exception information

Exceptions

TransitionNotAllowedEx-
ception

see Activity.abandon()

Abandon the invoking activity in a new transaction and maybe suspend it.

A.3.11.3. abandonActivity(String)

public void abandonActivity(String exception)
throws TransitionNotAllowedException;

Parameters

exception the exception to signal

Exceptions

TransitionNotAllowedEx-
ception

see Activity.abandon()

Interface ToolAgentContext

266

Abandon the invoking activity in a new transaction.

A.3.11.4. applicationId()

public String applicationId();

Parameters

return the id

Return the id given to the application in the process definition.

A.3.11.5. finishActivity(Map)

public void finishActivity(java.util.Map result)
throws InvalidDataException, CannotCompleteException;

Parameters

result the tool's result data. If null do not call setResult .

Exceptions

InvalidDataException see WfActivity.setResult(...)

CannotCompleteException see WfActivity.complete()

Set a result and complete the invoking activity in a new transaction.

A.3.11.6. lookupActivity(ActivityUniqueKey)

public de.danet.an.workflow.api.Activity lookupActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException, RemoteException;

Parameters

auk the activity's unique key

return the activity

Exceptions

InvalidKeyException if the activity specified by auk cannot be found.

RemoteException if a system-level error occurs.

Interface ToolAgentContext

267

Lookup the given ativity specified by its unique key.

A.3.12. Interface XMLArgumentTypeProvider
This interface can be implemented by ToolAgents that provide information about the accepted
coding of arguments that describe XML data.

Note that if a tool agent implements this interface, the type returned by requestedXMLArgu-
mentType overrides any settings in XPDL.

A.3.12.1. Synopsis

public interface de.danet.an.workflow.spis.aii.XMLArgumentTypeProvider {
// Public Static Fields

public static final int XML_AS_JDOM = 2;

public static final int XML_AS_SAX = 3;

public static final int XML_AS_W3C_DOM = 1;

// Public Methods

public int requestedXMLArgumentType();

}

Inheritance Path. Section A.3.12, “Interface XMLArgumentTypeProvider” [268]

A.3.12.2. XML_AS_JDOM

public static final int XML_AS_JDOM = 2;

Pass parameters as JDOM when tool is invoked. The parameter is passed in as java.util.List
, containing one or more elements, to support single-rooted XML structures as well as non-single
rooted structures.

A.3.12.3. XML_AS_SAX

public static final int XML_AS_SAX = 3;

Pass parameters as SAXEventBuffer when tool is invoked.

A.3.12.4. XML_AS_W3C_DOM

public static final int XML_AS_W3C_DOM = 1;

Pass parameters as W3C DOM when tool is invoked. The parameter is passed in as
org.w3c.dom.DocumentFragement , containing one or more elements, to support single-
rooted XML structures as well as non-single rooted structures.

A.3.12.5. requestedXMLArgumentType()

public int requestedXMLArgumentType();

Interface XMLArgumentTypeProvider

268

Parameters

return one of XML_AS_W3C_DOM , XML_AS_JDOM or
XML_AS_SAX

Return the requested type for XML arguments.

A.4. Package de.danet.an.workflow.spis.ras
This package defines the Resource Assignment Service used in the de.danet.an.workflow
package. This service is both used (by the core workflow component) and provided (as a sample im-
plementation by de.danet.an.workflow.assignment).

The service interface follows the standard conventions for a service interface, i.e. it defines an ab-
stract factory class and a service interface.

A.4.1. Additional Information

Since 1.0

A.4.2. Interface ActivityFinder
This interface defines facilities that map activity ids to WfActivity objects. ActivityFind-
ers are used (in combination with an identifier) to identify activities in calls to a ResourceAs-
signmentService . They are guaranteed to be serializable objects with properly implemented
<code>equals</code> and <code>hashCode</code> methods. It is expected that resource assign-
ment facilities keep a peristent, indexed record of ActivityFinder s and store references to
activities as tuples of a finder index and an activity identifier.

A.4.2.1. Synopsis

public interface de.danet.an.workflow.spis.ras.ActivityFinder {
// Public Methods

public de.danet.an.workflow.omgcore.WfActivity find(String actId)
throws NoSuchActivityException, RemoteException;

}

Inheritance Path. Section A.4.2, “Interface ActivityFinder” [269]

A.4.2.2. find(String)

public de.danet.an.workflow.omgcore.WfActivity find(String actId)
throws NoSuchActivityException, RemoteException;

Parameters

actId the activity id (unique in the scope of this ActivityFind-
er .

return the WfActivity found.

Package
de.danet.an.workflow.spis.ras

269

Exceptions

NoSuchActivityException if no activity with the given actId can be found.

RemoteException if a system-level error occurs.

Return the activity that is associated with the given id.

A.4.3. Error FactoryConfigurationError
This exception is thrown by the newInstance method of ResourceAssignmentService-
Factory .

A.4.3.1. Synopsis

public class de.danet.an.workflow.spis.ras.FactoryConfigurationError extends, java.lang.Error {
// Public Constructors

public FactoryConfigurationError();

public FactoryConfigurationError(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Error-> Section A.4.3,
“Error FactoryConfigurationError” [270]

A.4.3.2. FactoryConfigurationError()

public FactoryConfigurationError();

Creates a new exception.

A.4.3.3. FactoryConfigurationError(String)

public FactoryConfigurationError(String msg);

Parameters

msg the detail message.

Creates a new exception with the given message.

A.4.4. Exception NoSuchActivityException
This excpetion is thrown by the find method of ActivityFinder if no activity can be found

Error FactoryConfigurationError

270

for a given key.

A.4.4.1. Synopsis

public class de.danet.an.workflow.spis.ras.NoSuchActivityException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public NoSuchActivityException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.4.4,
“Exception NoSuchActivityException” [270]

A.4.4.2. NoSuchActivityException(String)

public NoSuchActivityException(String msg);

Parameters

msg the detail message.

Create a new exception with the given detail message.

A.4.5. Interface ResourceAssignmentService
This interface defines the resource assignment facility used by the workflow component. A central
design issue for this interface is the identification of activites.

The "key" method of WfActivity is by definition only unique within the scope of the con-
taining process and can thus not easily be used to identify a single activity in a workflow engine.
Even worse, a resource assignment service might be used by more than one workflow engine.

At this interface, an activity is therefore identified using an ActivityFinder and an identifier
that is unique with respect to the ActivityFinder . The ActivityFinder provides both a
namespace to allow different consumers to request resources and a means for the assignment facility
to map the identifier back to an actual WfActivity object. See the description of Activity-
Finder for more details.

From the workflow engine's point of view, the resource assignment service is the only source of ob-
jects of type WfResource and WfAssignment . Implementations of resource assignment ser-
vices may be (but need not be) based on a resource management service as defined in package
de.danet.an.workflow.spis.rms .

A.4.5.1. Synopsis

public interface de.danet.an.workflow.spis.ras.ResourceAssignmentService {
// Public Methods

public de.danet.an.workflow.omgcore.WfResource asResource(java.security.Principal principal)
throws RemoteException, InvalidKeyException;

Interface ResourceAssignmentSer-
vice

271

public java.util.Collection assignments(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity)

throws RemoteException;

public java.util.Collection authorizers(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException;

public java.util.Collection autoAssignResources(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity,
java.security.Principal principal,
de.danet.an.workflow.api.Participant participant)

throws RemoteException;

public void changeAssignment(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity,
de.danet.an.workflow.omgcore.WfResource oldResource,
de.danet.an.workflow.omgcore.WfResource newResource)

throws RemoteException, InvalidResourceException, AlreadyAssignedException, NotAssignedException;

public de.danet.an.workflow.omgcore.WfResource getResource(de.danet.an.workflow.omgcore.WfAssignment asnmnt)
throws RemoteException;

public boolean isMemberOfWorkItems(de.danet.an.workflow.omgcore.WfResource resource,
de.danet.an.workflow.omgcore.WfAssignment assignment)

throws RemoteException, NoSuchResourceException;

public java.util.Collection knownResources()
throws RemoteException;

public void removeAssignment(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity,
de.danet.an.workflow.omgcore.WfResource resource)

throws RemoteException, InvalidResourceException, NotAssignedException;

public de.danet.an.workflow.omgcore.WfResource resourceByKey(String key)
throws InvalidKeyException, RemoteException;

public java.util.Collection workItems(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException, NoSuchResourceException;

}

Inheritance Path. Section A.4.5, “Interface ResourceAssignmentService” [271]

A.4.5.2. asResource(Principal)

public de.danet.an.workflow.omgcore.WfResource asResource(java.security.Principal principal)
throws RemoteException, InvalidKeyException;

Parameters

Interface ResourceAssignmentSer-
vice

272

principal the principal.

return a WfResource object corresponding to the given principal.

Exceptions

InvalidKeyException if the resource with the given key can't be found.

RemoteException if a system-level error occurs.

Since 1.2

Given a principal, return the workflow resource associated with this principal.

As the workflow core does not have a defined access to a resource management facility, this map-
ping functionality must be brought to the workflow core by the resource assignment service. If the
resource assignment service is based on a resource management service as defined in package
de.danet.an.workflow.spis.rms , it can simply delegate this call to ResourceMan-
agementService.asResource . The workflow engine does not need this method for its op-
eration; however, it provides a method for accessing this information as part of the client interface to
ease the implementation of clients that e.g. want to generate a list of assignments for the current
user. The implementation of this method by a resource assignment service is therefore optional. If
not implemented, a call to this method must result in a
<code>UnsupportedOperationException</code>.

A.4.5.3. assignments(ActivityFinder, String, WfActivity)

public java.util.Collection assignments(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity)

throws RemoteException;

Parameters

actId a unique (with respect to an ActivityFinder) identifier
for the Activity. The length of actId is guaranteed not to
exceed 64.

finder the finder used to lookup activities by their finderId s.

activity the activity.

return the collection of assignments (instances of WfAssignment
).

Exceptions

RemoteException if a system-level error occurs.

Return the assignments to an activity.

Interface ResourceAssignmentSer-
vice

273

A.4.5.4. authorizers(WfResource)

public java.util.Collection authorizers(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException;

Parameters

resource the resource.

return a collection of WfResource objects, not including re-
source

Exceptions

RemoteException if a system-level error occurs.

Since 1.2

Given a WfResource object , return the collection of resources this resource is authorized for.

The resource assignment service usually uses its underlying resource management facility to imple-
ment this method, returning all groups the resource is a member of and all roles assigned to the re-
source. Resource assigments facilities may, however, modify this information e.g. according to con-
figured delegation rules.

If the resource assignment service is based on a resource management service as defined in package
de.danet.an.workflow.spis.rms , it can simply delegate this call to ResourceMan-
agementService.authorizers . The workflow engine does not need this method for its op-
eration; however, it provides a method for accessing this information as part of the client interface to
ease the implementation of clients. The implementation of this method by a resource assignment
service is therefore optional. If not implemented, a call to this method must result in a
<code>UnsupportedOperationException</code>.

A.4.5.5. autoAssignResources(ActivityFinder, String, WfActivity,
Principal, Participant)

public java.util.Collection autoAssignResources(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity,
java.security.Principal principal,
de.danet.an.workflow.api.Participant participant)

throws RemoteException;

Parameters

actId a unique (with respect to an ActivityFinder) identifier
for the Activity. The length of actId is guaranteed not to
exceed 64.

finder the finder used to lookup activities by their finderId s.

activity the activity that is about to become ready.

Interface ResourceAssignmentSer-
vice

274

principal the creator of the process, may be null .

participant the Participant that describes resource selection criteria.
The paramter may be null

return the assigned resources (instances of WfResource).

Exceptions

RemoteException if a system-level error occurs.

See Also Section A.4.2, “Interface ActivityFinder”
[269]

Triggers the automatic assignment of resources to an activity that is about to become ready.

Usually, criteria for the resource selection must be determined within the resource assignment, e.g.
based on the name of the activity, the process it belongs to etc. In some cases, however, the worflow
component may have some resource selection information available. The workflow component may
have obtained such information e.g. as part of the process description. If such information is avail-
able, it may optionally be passed to the automatic assignment. The type and valid values of such in-
formation depends totally on the resource assignment service used and remains undefined in the
scope of this interface.

A.4.5.6. changeAssignment(ActivityFinder, String, WfActivity,
WfResource, WfResource)

public void changeAssignment(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity,
de.danet.an.workflow.omgcore.WfResource oldResource,
de.danet.an.workflow.omgcore.WfResource newResource)

throws RemoteException, InvalidResourceException, AlreadyAssignedException, NotAssignedException;

Parameters

finder the finder used to lookup activities by their finderId s

actId a unique (with respect to an ActivityFinder) identifier
for the Activity. The length of actId is guaranteed not to
exceed 64

activity the activity being enacted

oldResource the resource that has its assignment removed

newResource the resource to be assigned

Exceptions

RemoteException if a system-level error occurs

Interface ResourceAssignmentSer-
vice

275

InvalidResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid

AlreadyAssignedException if the assignment already exists

NotAssignedException if there is no assignment to the old resource

See Also Section A.4.2, “Interface ActivityFinder”
[269]

Change an assignment for enacting an activity. This method is called by the workflow engine in
Activity.changeAssignment which should be used by resource assignment services to im-
plement WfAssignment.setAssignee .

A.4.5.7. getResource(WfAssignment)

public de.danet.an.workflow.omgcore.WfResource getResource(de.danet.an.workflow.omgcore.WfAssignment asnmnt)
throws RemoteException;

Parameters

asnmnt the assignment

return the resource

Exceptions

RemoteException if a system-level error occurs.

Since 1.3.4

Get the resource associated with an Assignment.

A.4.5.8. isMemberOfWorkItems(WfResource, WfAssignment)

public boolean isMemberOfWorkItems(de.danet.an.workflow.omgcore.WfResource resource,
de.danet.an.workflow.omgcore.WfAssignment assignment)

throws RemoteException, NoSuchResourceException;

Parameters

resource the resource.

assignment the assignment in question.

return true if the assignment belongs to the work items of the
resource .

Interface ResourceAssignmentSer-
vice

276

Exceptions

RemoteException if a system-level error occurs.

NoSuchResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid.

Find out if a given assignment belongs to the work items assigned to a particular resource.

A.4.5.9. knownResources()

public java.util.Collection knownResources()
throws RemoteException;

Parameters

return the collection of resources known to the resource assignment
service (instances of WfResource).

Exceptions

RemoteException if a system-level error occurs.

Returns at least the collection of all the workflow resources being assigned to activities, but should
also return the additional workflow resources that are known to the resource assignment service.

If the resource assignment service is based on a resource management service as defined in package
de.danet.an.workflow.spis.rms , it can simply delegate this call to ResourceMan-
agementService.listResources . The workflow engine does not need this method for its
operation; however, it provides a method for accessing this information as part of the client interface
to ease the implementation of clients. The implementation of this method by a resource assignment
service is therefore optional. If not implemented, a call to this method must result in a
<code>UnsupportedOperationException</code>.

A.4.5.10. removeAssignment(ActivityFinder, String, WfActivity,
WfResource)

public void removeAssignment(ActivityFinder finder,
String actId,
de.danet.an.workflow.omgcore.WfActivity activity,
de.danet.an.workflow.omgcore.WfResource resource)

throws RemoteException, InvalidResourceException, NotAssignedException;

Parameters

finder the finder used to lookup activities by their finderId s

actId a unique (with respect to an ActivityFinder) identifier
for the Activity. The length of actId is guaranteed not to

Interface ResourceAssignmentSer-
vice

277

exceed 64.

activity the activity that is about to become ready

resource the resource to be assigned

Exceptions

RemoteException if a system-level error occurs

InvalidResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid.

NotAssignedException if the resource is not assigned to the given activity

See Also Section A.4.2, “Interface ActivityFinder”
[269]

Remove the assignment of a resource to an activity. This method is called by the workflow engine
in Activity.removeAssignment which, in turn, should be used by resource management
services to implement WfResource.release .

A.4.5.11. resourceByKey(String)

public de.danet.an.workflow.omgcore.WfResource resourceByKey(String key)
throws InvalidKeyException, RemoteException;

Parameters

key the key.

return a WfResource object corresponding to the given key.

Exceptions

InvalidKeyException if the resource with the given key can't be found. As the en-
vironment is a concurrent multi user environment,
WfResource objects (and keys obtained from
WfResource objects) may become invalid.

RemoteException if a system-level error occurs.

Since 1.2

Given the key of a WfResource (obtained with resourceKey()), return the workflow re-
source associated with this key.

For the workflow core, the resource assignment interface is the only source of WfResource ob-

Interface ResourceAssignmentSer-
vice

278

jects. While resourceKey() provides an easy mapping of those objects to unique keys, the re-
verse mapping can only be provided by the resource management facility that has created the
WfResource objects.

As the workflow core does not have a defined access to a resource management facility, this reverse
mapping functionality must be brought to the workflow core by the resource assignment service.
(Which is quite reasonable, as it has delivered the WfResource objects in the first place.) If the re-
source assignment service is based on a resource management service as defined in package
de.danet.an.workflow.spis.rms , it can simply delegate this call to ResourceMan-
agementService.resourceByKey . The workflow engine does not need this method for its
operation; however, it provides a method for accessing this information as part of the client interface
to ease the implementation of clients. The implementation of this method by a resource assignment
service is therefore optional. If not implemented, a call to this method must result in a
<code>UnsupportedOperationException</code>.

A.4.5.12. workItems(WfResource)

public java.util.Collection workItems(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException, NoSuchResourceException;

Parameters

resource the resource.

return the collection of assigned work items (instances of
WfAssignment).

Exceptions

RemoteException if a system-level error occurs.

NoSuchResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid.

Return the assignments of a given resource.

A.4.6. Class ResourceAssignmentServiceFactory
Defines a factory API that enables the workflow component to obtain a resource assignment facility.

A.4.6.1. Synopsis

public abstract class de.danet.an.workflow.spis.ras.ResourceAssignmentServiceFactory {
// Protected Constructors

protected ResourceAssignmentServiceFactory();

// Public Static Methods

public static ResourceAssignmentServiceFactory newInstance()
throws FactoryConfigurationError;

// Public Methods

public abstract ResourceAssignmentService newResourceAssignmentService()
throws FactoryConfigurationError;

Class ResourceAssignmentService-
Factory

279

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.4.6, “Class ResourceAssignmentServiceFactory”
[279]

A.4.6.2. ResourceAssignmentServiceFactory()

protected ResourceAssignmentServiceFactory();

Constructor. Must be overridden with a parameterless public constructor by derived class.

A.4.6.3. newInstance()

public static ResourceAssignmentServiceFactory newInstance()
throws FactoryConfigurationError;

Parameters

return an instance of the ResourceAssignmentService-
Factory .

Exceptions

FactoryConfigurationErr-
or

if a factory instance can't be created.

Obtain a new instance of a ResourceAssignmentServiceFactory . This static method cre-
ates a new factory instance. The method uses the following ordered lookup procedure to determine
the ResourceAssignmentServiceFactory implementation class to load:

• If an initial naming context is available, look for a a classname in
java:comp/env/de.danet.an.workflow.spis.ras.ResourceAssignmentSer
viceFactory . The configuration for a class as resource assignment service thus looks like:

<env-entry>
<description>Configure the resource assignment factory</description>
<env-entry-name>de.danet.an.workflow.spis.ras.ResourceAssignmentServiceFac\

tory</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

FactoryImplementationClass
</env-entry-value>
</env-entry>

Note that this environment entry must be inserted in the ejb-jar.xml or web.xml for every
EJB resp. servlet that calls the newInstance method of ResourceAssignmentSer-
viceFactory .

• Use the services API (as detailed in the JAR specification), if available, to determine the class-
name. The Services API will look for a classname in the file META-
INF/ser-
vices/

Class ResourceAssignmentService-
Factory

280

de.danet.an.workflow.spis.ras.ResourceAssignmentServiceFactory . in
jars available to the runtime.

A.4.6.4. newResourceAssignmentService()

public abstract ResourceAssignmentService newResourceAssignmentService()
throws FactoryConfigurationError;

Parameters

return the resource assignment service.

Exceptions

FactoryConfigurationErr-
or

if not all required resources can be obtained.

Creates a new instance of a ResourceAssignmentService .

A.5. Package de.danet.an.workflow.spis.rms
This package defines the interface to a resource management service (RMS) as used in the
de.danet.an.workflow.spis.ras sample implementation. Note that the implementation of
the workflow core does not require a resource management service. However, the sample resource
assignment service (RAS) needs a resource management service. We have based the sample RAS on
this interface to allow a deployer to use the sample RAS with any resource management service by
simply writing an adapter.

The service interface follows the standard conventions for a service interface, i.e. it defines an ab-
stract factory class and a service interface.

Implementing this interface implies a particular problem. The RMS must provide objects that imple-
ment WfResource . This interface has, as specified by OMG, methods workItems isMem-
berOfWorkItems and release . While it is obvious (from an OO point of view) that those
methods are defined as methods of WfResource the RMS cannot really implement them. They
can only be implemented by an RAS, as it is its task to track assignments. Thus the objects defined
and returned by an RMS can only implement the methods by delegating to the RAS.

There may, however, be several instances of RASs in an environment that request resources from
the RMS. How can the RMS know, where to delegate to? One way to solve this problem would be
to have every RAS "register" itself with the RMS if it assigns a resource from that RMS. This ap-
proach has a major drawback. In order to be able to recover from an application restart, the RMS
would have to implement such a registry for RASs in persistent store. Depending on the implement-
ation of an RAS, this may be from difficult to impossible.

A much more simple solution is to have a central runtime registry of all available RASs and use the
RASs registered there to implement the above mentioned WfResource methods (1) . This approach
is even more charming as something very close to such a registry exists anyway. While not designed
to fulfill this function in the first place, the ResourceAssignmentServiceFactory actually
implements a kind of registry, as it must know about all RASs in the system (else there is no way
that the workflow core uses it for resource assignment anyway).

The ResourceAssignmentServiceFactory therefore provides the methods needed to im-
plement workItems isMemberOfWorkItems and release . As a convenience this package
provides a class <code>ResourceSupport</code> that uses the methods provided by the Resour-

Package
de.danet.an.workflow.spis.rms

281

ceAssignmentServiceFactory and can be directly used by an RMS as base class for provid-
ing its implementation of WfResource .

(1)Few things in life are free. There is a small performance penalty to pay for this approach. As the
RMS doesn't keep track of the RASs that have requested a particular resource, the central registry
has to query all known RASs. However, tracking RAS information (e.g. with identifiers usable as
hints for the central registry) in the RMS would impose an overhead as well.

A.5.1. Additional Information

Since 1.0

A.5.2. Class DefaultGroupResource
This class provides a GroupResource implementation based on the BasicResource . The
class ensures that the resource key can be distinguished as a group resource's key.

A.5.2.1. Synopsis

public class de.danet.an.workflow.spis.rms.DefaultGroupResource extends, de.danet.an.workflow.spis.rms.DefaultResource
implements, de.danet.an.workflow.api.GroupResource, java.io.Serializable {

// Public Constructors

public DefaultGroupResource(ResourceAssignmentContext cbh,
String id,
String name);

// Public Static Methods

public static String getId(String key);

public static boolean isValidKey(String key);

// Public Methods

public String getId();

}

Methods inherited from de.danet.an.workflow.spis.rms.DefaultResource : equals , hash-
Code , isMemberOfWorkItems , release , resourceKey , resourceName ,
workItems

Methods inherited from java.lang.Object : clone , finalize , getClass , notify , no-
tifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.5.3, “Class DefaultResource” [283] -> Section A.5.2,
“Class DefaultGroupResource” [282]

A.5.2.2. DefaultGroupResource(ResourceAssignmentContext,
String, String)

public DefaultGroupResource(ResourceAssignmentContext cbh,
String id,
String name);

Parameters

Additional Information

282

cbh
id
name

Create a new instance with all attributes initialized to defaults or the given values.

A.5.2.3. getId()

public String getId();

Return the id passed to the constructor.

A.5.2.4. getId(String)

public static String getId(String key);

Return the id part of a key.

A.5.2.5. isValidKey(String)

public static boolean isValidKey(String key);

Check if the given key is a group resource's key.

A.5.3. Class DefaultResource
This class provides a default implementation of the WfResource 's methods workItems , is-
MemberOfWorkItems and release . The implementation is based on the methods of a Re-
sourceAssignmentContext passed to the constructor.

A.5.3.1. Synopsis

public class de.danet.an.workflow.spis.rms.DefaultResourceimplements, de.danet.an.workflow.omgcore.WfResource, java.io.Serializable {
// Public Constructors

public DefaultResource(ResourceAssignmentContext cbh,
String key,
String name);

// Public Methods

public boolean equals(Object obj);

public int hashCode();

public boolean isMemberOfWorkItems(de.danet.an.workflow.omgcore.WfAssignment assignment)
throws RemoteException, IllegalStateException;

public void release(de.danet.an.workflow.omgcore.WfAssignment fromAssignment,
String releaseInfo)

throws RemoteException, NotAssignedException;

public String resourceKey()
throws RemoteException;

public String resourceName()

Class DefaultResource

283

throws RemoteException;

public java.util.Collection workItems()
throws RemoteException, IllegalStateException;

}

Direct known subclasses :
de.danet.an.workflow.spis.rms.DefaultGroupResource ,
de.danet.an.workflow.spis.rms.DefaultRoleResource ,
de.danet.an.workflow.spis.rms.DefaultUserResource

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.5.3, “Class DefaultResource” [283]

A.5.3.2. DefaultResource(ResourceAssignmentContext, String,
String)

public DefaultResource(ResourceAssignmentContext cbh,
String key,
String name);

Parameters

assignSvc the callback handler

key the resource's key

name the resource's name

The constructor. It ensures that a valid factory exists.

A.5.3.3. isMemberOfWorkItems(WfAssignment)

public boolean isMemberOfWorkItems(de.danet.an.workflow.omgcore.WfAssignment assignment)
throws RemoteException, IllegalStateException;

Specified by: Method isMemberOfWorkItems in interface WfResource

Parameters

assignment the assignment in question.

return true if the association exists.

Exceptions

RemoteException if a system-level error occurs. This is actually a remapping of
the NoSuchResourceException thrown by Resour-
ceAssignmentSer-

Class DefaultResource

284

vice.isMemberOfWorkItems(...) . It must be
remapped because this method's signature is specified by
WfResource.isMemberOfWorkItems(...) .

IllegalStateException if the resource has become invalid.

Checks if a given WfAssignment is associated with this resource.

A.5.3.4. release(WfAssignment, String)

public void release(de.danet.an.workflow.omgcore.WfAssignment fromAssignment,
String releaseInfo)

throws RemoteException, NotAssignedException;

Specified by: Method release in interface WfResource

Parameters

fromAssignment the specific assignment.

releaseInfo specifies additional information on the reason for realizing
the resource as input.

Exceptions

NotAssignedException if the resource is not associated with the given assignment.

RemoteException if a system-level error occurs.

Signals to the resource that it is no longer needed for a specific assignment. The default implementa-
tion calls removeAssignment on the activity.

A.5.3.5. resourceKey()

public String resourceKey()
throws RemoteException;

Specified by: Method resourceKey in interface WfResource

Parameters

return key of resource

Exceptions

RemoteException problems accessing resource

Retrieve the key of a resource.

Class DefaultResource

285

A.5.3.6. resourceName()

public String resourceName()
throws RemoteException;

Specified by: Method resourceName in interface WfResource

Parameters

return name of resource

Exceptions

RemoteException problems accessing resource

Retrieve the name of a resource.

A.5.3.7. workItems()

public java.util.Collection workItems()
throws RemoteException, IllegalStateException;

Specified by: Method workItems in interface WfResource

Parameters

return the associated WfAssignments s.

Exceptions

RemoteException if a system-level error occurs.

IllegalStateException if the resource has become invalid. This is actually a remap-
ping of the NoSuchResourceException thrown by Re-
sourceAssignmentService.workItems() . It must
be remapped because this method's signature is specified by
WfResource.workItems() .

This method returns the WfAssignments s associated with a resource.

A.5.4. Class DefaultRoleResource
This class provides a RoleResource implementation based on the BasicResource . The class
ensures that the resource key can be distinguished as a role resource's key.

A.5.4.1. Synopsis

public class de.danet.an.workflow.spis.rms.DefaultRoleResource extends, de.danet.an.workflow.spis.rms.DefaultResource
implements, de.danet.an.workflow.api.RoleResource, java.io.Serializable {

Class DefaultRoleResource

286

// Public Constructors

public DefaultRoleResource(ResourceAssignmentContext cbh,
String id,
String name);

// Public Static Methods

public static String getId(String key);

public static boolean isValidKey(String key);

// Public Methods

public String getId();

}

Methods inherited from de.danet.an.workflow.spis.rms.DefaultResource : equals , hash-
Code , isMemberOfWorkItems , release , resourceKey , resourceName ,
workItems

Methods inherited from java.lang.Object : clone , finalize , getClass , notify , no-
tifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.5.3, “Class DefaultResource” [283] -> Sec-
tion A.5.4, “Class DefaultRoleResource” [286]

A.5.4.2. DefaultRoleResource(ResourceAssignmentContext,
String, String)

public DefaultRoleResource(ResourceAssignmentContext cbh,
String id,
String name);

Parameters

cbh
id
name

Create a new instance with all attributes initialized to defaults or the given values.

A.5.4.3. getId()

public String getId();

Return the id passed to the constructor.

A.5.4.4. getId(String)

public static String getId(String key);

Return the id part of a key.

A.5.4.5. isValidKey(String)

Class DefaultRoleResource

287

public static boolean isValidKey(String key);

Check if the given key is a role resource's key.

A.5.5. Class DefaultUserResource
This class provides a UserResource implementation based on the BasicResource . The class
ensures that the resource key can be distinguished as a user resource's key.

A.5.5.1. Synopsis

public class de.danet.an.workflow.spis.rms.DefaultUserResource extends, de.danet.an.workflow.spis.rms.DefaultResource
implements, de.danet.an.workflow.api.UserResource, java.io.Serializable {

// Public Constructors

public DefaultUserResource(ResourceAssignmentContext cbh,
String id,
String name);

// Public Static Methods

public static String getId(String key);

public static boolean isValidKey(String key);

// Public Methods

public String getId();

}

Methods inherited from de.danet.an.workflow.spis.rms.DefaultResource : equals , hash-
Code , isMemberOfWorkItems , release , resourceKey , resourceName ,
workItems

Methods inherited from java.lang.Object : clone , finalize , getClass , notify , no-
tifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.5.3, “Class DefaultResource” [283] -> Sec-
tion A.5.5, “Class DefaultUserResource” [288]

A.5.5.2. DefaultUserResource(ResourceAssignmentContext,
String, String)

public DefaultUserResource(ResourceAssignmentContext cbh,
String id,
String name);

Parameters

cbh
id
name

Create a new instance with all attributes initialized to defaults or the given values.

A.5.5.3. getId()

Class DefaultUserResource

288

public String getId();

Return the id passed to the constructor.

A.5.5.4. getId(String)

public static String getId(String key);

Return the id part of a key.

A.5.5.5. isValidKey(String)

public static boolean isValidKey(String key);

Check if the given key is a user resource's key.

A.5.6. Error FactoryConfigurationError
This exception is thrown by the newInstance method of ResourceManagementService-
Factory .

A.5.6.1. Synopsis

public class de.danet.an.workflow.spis.rms.FactoryConfigurationError extends, java.lang.Error {
// Public Constructors

public FactoryConfigurationError(Exception cause);

public FactoryConfigurationError(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Error-> Section A.5.6,
“Error FactoryConfigurationError” [289]

A.5.6.2. FactoryConfigurationError(Exception)

public FactoryConfigurationError(Exception cause);

Creates a new exception.

A.5.6.3. FactoryConfigurationError(String)

public FactoryConfigurationError(String msg);

Parameters

Error FactoryConfigurationError

289

msg the detail message.

Creates a new exception with the given message.

A.5.7. Interface ResourceAssignmentContext
This interface defines the callbacks that are needed by DefaultResource to obtain information
from the server.

A.5.7.1. Synopsis

public interface de.danet.an.workflow.spis.rms.ResourceAssignmentContext extends, java.io.Serializable {
// Public Methods

public boolean isMemberOfWorkItems(de.danet.an.workflow.omgcore.WfResource resource,
de.danet.an.workflow.omgcore.WfAssignment assignment)

throws RemoteException, NoSuchResourceException;

public java.util.Collection workItems(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException, NoSuchResourceException;

}

Inheritance Path. Section A.5.7, “Interface ResourceAssignmentContext” [290]

A.5.7.2. isMemberOfWorkItems(WfResource, WfAssignment)

public boolean isMemberOfWorkItems(de.danet.an.workflow.omgcore.WfResource resource,
de.danet.an.workflow.omgcore.WfAssignment assignment)

throws RemoteException, NoSuchResourceException;

Parameters

resource the resource.

assignment the assignment in question.

return true if the assignment belongs to the work items of the
resource .

Exceptions

RemoteException if a system-level error occurs.

NoSuchResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid.

Find out if a given assignment belongs to the work items assigned to a particular resource.

A.5.7.3. workItems(WfResource)

public java.util.Collection workItems(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException, NoSuchResourceException;

Interface ResourceAssignmentCon-
text

290

Parameters

resource the resource.

return the collection of assigned work items (instances of
WfAssignment).

Exceptions

RemoteException if a system-level error occurs.

NoSuchResourceException if the resource is invalid. As the environment is a concurrent
multi user environment, WfResource objects may become
invalid.

Return the assignments of a given resource.

A.5.8. Interface ResourceManagementService
This interface defines the workflow resource management service used in the workflow package.

A.5.8.1. Synopsis

public interface de.danet.an.workflow.spis.rms.ResourceManagementService {
// Public Methods

public de.danet.an.workflow.omgcore.WfResource asResource(java.security.Principal principal)
throws ResourceNotFoundException, RemoteException;

public java.util.Collection authorizers(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException;

public java.util.Collection listResources()
throws RemoteException;

public de.danet.an.workflow.omgcore.WfResource resourceByKey(String key)
throws ResourceNotFoundException, RemoteException;

public java.util.Collection selectResources(Object resSel)
throws RemoteException, UnsupportedOperationException;

}

Inheritance Path. Section A.5.8, “Interface ResourceManagementService” [291]

A.5.8.2. asResource(Principal)

public de.danet.an.workflow.omgcore.WfResource asResource(java.security.Principal principal)
throws ResourceNotFoundException, RemoteException;

Parameters

Interface ResourceManagementSer-
vice

291

principal the principal.

return a WfResource object corresponding to the given principal.

Exceptions

ResourceNotFoundExcep-
tion

if the StaffMember with the given key can't be found or the
key is not associate with an StaffMember object.

RemoteException if a system-level error occurs.

Given a principal, return the workflow resource associated with this principal by the resource man-
agement facility.

This method is usually used to get a WfResource object corresponding to the current user. The
WfResource object can subsequently be used to e.g. determine the current user's worklist.

A.5.8.3. authorizers(WfResource)

public java.util.Collection authorizers(de.danet.an.workflow.omgcore.WfResource resource)
throws RemoteException;

Parameters

resource the resource.

return a collection of WfResource objects, not including re-
source

Exceptions

RemoteException if a system-level error occurs.

Given a WfResource object , return the collection of resources this resource is authorized for.

This method usually returns all groups the resource is a member of and all roles assigned to the re-
source.

A.5.8.4. listResources()

public java.util.Collection listResources()
throws RemoteException;

Parameters

return collection of WfResource objects.

Exceptions

Interface ResourceManagementSer-
vice

292

RemoteException if a system-level error occurs.

List all available resources.

A.5.8.5. resourceByKey(String)

public de.danet.an.workflow.omgcore.WfResource resourceByKey(String key)
throws ResourceNotFoundException, RemoteException;

Parameters

key the key.

return a WfResource object corresponding to the given key.

Exceptions

ResourceNotFoundExcep-
tion

if the StaffMember or an StaffGroup with the given key can't
be found.

RemoteException if a system-level error occurs.

Given a key , return the workflow resource associated with this key.

This method is usually used to get a WfResource object corresponding to the given key.

A.5.8.6. selectResources(Object)

public java.util.Collection selectResources(Object resSel)
throws RemoteException, UnsupportedOperationException;

Parameters

resSel an object that describes resource selection criteria.

return collection of WfResource objects.

Exceptions

RemoteException if a system-level error occurs.

UnsupportedOperationEx-
ception

if the resource management service does not support this fea-
ture.

This optional method selects resources based on the resource selection criteria passed as parameter.

Usually, criteria for the resource selection must be determined within the resource assignment,
based on the list of resources obtained with listResources . Implementations of resource man-
agement facilities may, however, support some query functionality that eases this task for the re-

Interface ResourceManagementSer-
vice

293

source assignment service. The resource assignment service may have received such resource selec-
tion information from the workflow engine via autoAssignResources (the workflow com-
ponent has obtained the information probably as part of the process description and passed it
through transparently).

A.5.9. Class ResourceManagementServiceFactory
Defines a factory API that enables a workflow component to obtain a workflow resource manage-
ment service.

A.5.9.1. Synopsis

public abstract class de.danet.an.workflow.spis.rms.ResourceManagementServiceFactoryimplements, java.io.Serializable {
// Protected Constructors

protected ResourceManagementServiceFactory();

// Public Static Methods

public static ResourceManagementServiceFactory newInstance()
throws FactoryConfigurationError;

// Public Methods

public ResourceAssignmentContext getResourceAssignmentContext();

public de.danet.an.workflow.spis.ras.ResourceAssignmentService getResourceAssignmentService();

public abstract ResourceManagementService newResourceManagementService()
throws FactoryConfigurationError;

public void setResourceAssignmentContext(ResourceAssignmentContext resourceAssignmentContext);

public void setResourceAssignmentService(de.danet.an.workflow.spis.ras.ResourceAssignmentService service);

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.5.9, “Class ResourceManagementServiceFactory”
[294]

A.5.9.2. ResourceManagementServiceFactory()

protected ResourceManagementServiceFactory();

Constructor. Must be overridden with a parameterless public constructor by derived class.

A.5.9.3. getResourceAssignmentContext()

public ResourceAssignmentContext getResourceAssignmentContext();

Parameters

return Returns the configured resource assignment context.

Class ResourceManagementService-
Factory

294

See Also setResourceAssignmentCon-
text(de.danet.an.workflow.spis.rms.Resour
ceAssignmentContext) [296]

A.5.9.4. getResourceAssignmentService()

public de.danet.an.workflow.spis.ras.ResourceAssignmentService getResourceAssignmentService();

Parameters

return the resource assignment service.

See Also setResourceAssignmentSer-
vice(de.danet.an.workflow.spis.ras.Resour
ceAssignmentService) [297]

Deprecated

see setResourceAssignmentService

Return the resource assignment service set with setResourceAssignmentService .

A.5.9.5. newInstance()

public static ResourceManagementServiceFactory newInstance()
throws FactoryConfigurationError;

Parameters

return an instance of the ResourceManagementService-
Factory .

Exceptions

FactoryConfigurationErr-
or

if a factory instance can't be created.

Obtain a new instance of a ResourceManagementServiceFactory . This static method cre-
ates a new factory instance . The method uses the following ordered lookup procedure to determine
the ResourceManagementServiceFactory implementation class to load:

• If an initial naming context is available, look for a a classname in
java:comp/env/de.danet.an.workflow.spis.rms.ResourceManagementSer
viceFactory . The configuration for a class as resource management service thus looks like:

<env-entry> <description>Configure the resource management
factory</description>
<env-entry-name>de.danet.an.workflow.spis.ras.ResourceManagementServiceFacto\

Class ResourceManagementService-
Factory

295

ry</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

FactoryImplementationClass
</env-entry-value>
</env-entry> <env-entry>

Note that this environment entry must be inserted in the ejb-jar.xml or web.xml for every
EJB resp. servlet that calls the newInstance method of ResourceManagementSer-
viceFactory .

• Use the services API (as detailed in the JAR specification), if available, to determine the class-
name. The Services API will look for a classname in the file META-
INF/ser-
vices/
de.danet.an.workflow.spis.rms.ResourceManagementServiceFactory . in
jars available to the runtime.

A.5.9.6. newResourceManagementService()

public abstract ResourceManagementService newResourceManagementService()
throws FactoryConfigurationError;

Parameters

return the resource management service.

Exceptions

FactoryConfigurationErr-
or

if a service instance can't be created.

Creates a new instance of a ResourceManagementService .

A.5.9.7. setResourceAssignmentContext(ResourceAssignmentCo
ntext)

public void setResourceAssignmentContext(ResourceAssignmentContext resourceAssignmentContext);

Parameters

resourceAssignmentCon-
text

The resourceAssignmentContext to set.

Specifies the resource assignment service to be used by the instances of ResourceManagement-
Service subsequently created (by calling newResourceManagementService()).

A resource management service needs a reference to a resource assignment context to be able to im-
plement WfResource objects. E.g. the method workItems requires that a WfAssignment be

Class ResourceManagementService-
Factory

296

returned, something that can only be done in cooperation with the resource assignment service.

A.5.9.8. setResourceAssignmentService(ResourceAssignmentSer
vice)

public void setResourceAssignmentService(de.danet.an.workflow.spis.ras.ResourceAssignmentService service);

Parameters

service the resource management service.

See Also getResourceAssignmentService() [295]

Deprecated

the resource management service needs only a small subset of the methods provided by a
ResourceAssignmentService . To allow greater flexibility when implementing a
resource management service, the requirement for a complete resource assignment service
has been replaced with the requirement for a ResourceAssignmentContext .

Specifies the resource assignment service to be used by the instances of ResourceManagement-
Service subsequently created (by calling newResourceManagementService()).

A resource management service needs a reference to a resource assignment service to be able to im-
plement WfResource objects. The method workItems requires that a WfAssignment be re-
turned, something that can only be done in cooperation with the resource assignment service.

An implementation problem may arise from the requirement to set a ResourceAssignment-
Service as implementations of ResourceAssignmentService that in turn rely on a Re-
sourceManagementService may need a ResourceManagementService in order to be
instantiated. Such implementations of ResourceAssignmentService have therefore to delay
the actual request for a ResourceManagementService instance until they have made them-
selves known to the ResourceManagementServiceFactory .

A.5.10. Exception ResourceNotFoundException
This exception is thrown by the resource service implementation if no resource for a given key can
be found.

A.5.10.1. Synopsis

public class de.danet.an.workflow.spis.rms.ResourceNotFoundException extends, java.lang.Exception
implements, java.io.Serializable {

// Public Constructors

public ResourceNotFoundException();

public ResourceNotFoundException(String msg);

}

Methods inherited from java.lang.Throwable : fillInStackTrace , getCause , getLoc-
alizedMessage , getMessage , getStackTrace , initCause , printStackTrace ,
setStackTrace , toString

Exception ResourceNotFoundExcep-
tion

297

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , wait

Inheritance Path. java.lang.Object-> java.lang.Throwable-> java.lang.Exception-> Section A.5.10,
“Exception ResourceNotFoundException” [297]

A.5.10.2. ResourceNotFoundException()

public ResourceNotFoundException();

Creates a new exception.

A.5.10.3. ResourceNotFoundException(String)

public ResourceNotFoundException(String msg);

Parameters

msg the detail message.

Creates a new exception with the given message.

A.6. Package de.danet.an.workflow.tools.util
This package provides support classes for the implementation of tool agents and applications. Un-
like the core API and the extended API (including the application invocation
interface) this package is not intended to be part of a general Java workflow API. Rather, it
provides some WfMOpen specific utilities that ease the implementation of tool agents and applica-
tions to be used with the WfMOpen workflow engine.

Using the asynchronous tool invocation API typically requires that the activity and the data passed
to the tool agent as parameters are saved in persistent store. The tool (application) that is to actually
work with the information typically runs completely independent of the workflow engine in another
operating system process or at least in another thread. It accesses the persisted information and e.g.
presents the tasks that require human interaction in a GUI. When the interaction has completed, the
application retrieves the activity and calls " setResult() " and " complete() " on it.

To support the implementation of the function described above, this package provides a
<code>SimpleApplicationDirectory</code>. This class implements a general purpose persistent
store for the data passed to the tool agent (i.e. the activity and the actual parameters) and additional
state information. Tool agents create ("register") instances in this directory. Each instance represents
a tool invocation (task) currently running in an external application. Creating an entry results in a
unique id that may subsequently be used to retrieve, update or remove the instance. Instances may
also be retrieved using an arbitrary key associated with the instance by the registering tool agent, or
by activity or by searching instances assigned to a particular WfResource .

Tool agents using the directory should be derived from SimpleApplicationAgent . They can
access the directory by simply invoking the method applicationDirectory() . External ap-
plication should use the workflow service and SimpleApplicationDirectoryLookup to
access the directory. Applications that run within the application server (or components running
within the applictaion server that act on behalf of the external application) may obtain the applica-
tion directory's local interface by looking it up in JNDI. The name to use for the lookup depends on
your application configuration, see section "Application and client assembly", subsection "Work-
flow module" in the user manual.

Note that the directory may also be used to persist application state across several tool agent invoca-
tions by associating an existing instance with a new activity. An example of this requirement

Package
de.danet.an.workflow.tools.util

298

is the timer tool. One tool agent creates a timer in a conceptually independently running application
and gets an id for it. Another tool agent may then cancel this time or wait for it to expire. I.e. the
task initiated by the first tool agent in the application runs spans several tool agent invocations.

Entries in the directory are automatically cleaned when the process they relate to (i.e. the activity's
container) is removed.

A.6.1. Additional Information

Since V1.2

A.6.2. Interface DirectInvocable
This interface marks a tool agent as requiring no or only read-only access to the activity passed to
invoke .

The issue arises from the necessity to invoke the tool agent in its own transaction. In order to
provide the tool agent with full access to the activity, the activity must not be involved in another
transaction. However, as tool agent invocation obviously updates the state of the activity, the activ-
ity (having its state updated) is involved in a transaction when the tool agent is invoked. To resolve
this, WfMOpen does not invoke the tool agent directly. Rather, its sends a message to a tool agent
invocation queue as part of the state update transaction and completes the transaction. The message
is then retrieved from the queue and the tool agent is invoked without involving the activity in the
message handling transaction.

Of course, this induces a considerable overhead which can be avoided if the tool agent accesses the
activity not at all or uses only the methods key , activityUniqueKey or container . Exper-
ience shows that this is true for a lot of tool agents; either because they let an application running in
another thread or process do the work, or because they use the ResultProvider interface and do
not require access to the activity. If a tool agent satisfies these criteria, it may make this known to
the workflow engine by implementing this marker interface. If a tool agent implements this inter-
face, the engine does not put a message on the tool invocation queue but rather invokes the tool
agent directly during state update.

Note that since the activity is involved in the state update transaction, the engine cannot call
setResult and complete in a new transaction after tool agent invocation. Rather, these meth-
ods will be called in the same transaction as the tool agent invocation. Thus if RemoteExcep-
tion s occur when these methods are called by the workflow engine, the complete transaction, in-
cluding the tool invocation, will be repeated. Tools that are "expensive" to execute or have side ef-
fects should not implement DirectInvocable .

A.6.2.1. Synopsis

public interface de.danet.an.workflow.tools.util.DirectInvocable {
}

Inheritance Path. Section A.6.2, “Interface DirectInvocable” [299]

A.6.3. Class SimpleApplicationAgent
This is a base class for writing agents for applications that have a life cycle exceeding a single tool
agent invocation, and have only state information that can efficiently be persisted as a binary large
object in an RDBMs.

An example for such an application is the wait tool (see User Manual). A wait tool (or "wait applic-
ation") is created by one tool agent invocation. Then another tool agent invocation waits for the
completion of the wait, while yet another tool agent invocation may cause the wait tool to complete
prematurely. The wait tool has state that is controlled by the tool agents and a timer provided by the
enviroment. Its state is therefore completely serializable (no open sockets, tool controlled threads

Additional Information

299

etc.).

This base class mainly provides access to the application directory that does all the im-
portant work.

A.6.3.1. Synopsis

public abstract class de.danet.an.workflow.tools.util.SimpleApplicationAgentimplements, de.danet.an.workflow.spis.aii.ToolAgent {
// Public Constructors

public SimpleApplicationAgent();

// Public Methods

public void terminate(de.danet.an.workflow.api.Activity activity)
throws ApplicationNotStoppedException, RemoteException;

// Protected Methods

protected SimpleApplicationDirectoryLocal applicationDirectory()
throws ResourceNotAvailableException;

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.6.3, “Class SimpleApplicationAgent” [299]

A.6.3.2. SimpleApplicationAgent()

public SimpleApplicationAgent();

Creates an instance of SimpleApplicationAgent with all attributes initialized to default val-
ues.

A.6.3.3. applicationDirectory()

protected SimpleApplicationDirectoryLocal applicationDirectory()
throws ResourceNotAvailableException;

Parameters

return the application directory

Exceptions

ResourceNotAvailableEx-
ception

if an application directory EJB cannot be instantiated

Return the application directory.

A.6.3.4. terminate(Activity)

public void terminate(de.danet.an.workflow.api.Activity activity)
throws ApplicationNotStoppedException, RemoteException;

Class SimpleApplicationAgent

300

Specified by: Method terminate in interface ToolAgent

Parameters

activity the activity to be canceled

Exceptions

ApplicationNotStoppedEx-
ception

if execution cannot be terminated (see ApplicationNot-
StoppedException). workflow engine should retry the
tool invocation

RemoteException if a temporary problem occurs and the workflow engine
should retry the tool invocation

Terminates execution of the given activity. This base implementation simply removes the applica-
tion instance fom the application directory.

A.6.4. Interface SimpleApplicationDirectory
Remote interface for SimpleApplicationDirectory.

A.6.4.1. Synopsis

public interface de.danet.an.workflow.tools.util.SimpleApplicationDirectory extends, javax.ejb.EJBObject {
// Public Methods

public SimpleApplicationInfo infoByActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException, RemoteException;

public java.util.Collection infosByApplication(String applName)
throws RemoteException;

public java.util.Collection infosByKey(String applName,
String applInstKey)

throws InvalidKeyException, RemoteException;

public java.util.Collection infosByResource(String applName,
String resourceKey)

throws RemoteException;

public SimpleApplicationInfo instanceInfo(long instId)
throws InvalidKeyException, RemoteException;

public long registerInstance(String applName,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment)

throws RemoteException;

public long registerInstance(String applName,
String applInstKey,
de.danet.an.workflow.api.Activity activity,

Interface SimpleApplicationDirectory

301

Object state,
boolean saveAssignment)

throws RemoteException;

public void removeInstance(long instId)
throws RemoteException;

public void updateInvokingActivity(long instId,
de.danet.an.workflow.api.ActivityUniqueKey auk)

throws InvalidKeyException, RemoteException;

public void updateResourceKey(long instId,
String resourceKey)

throws InvalidKeyException, RemoteException;

public void updateState(long instId,
Object state)

throws InvalidKeyException, RemoteException;

}

See Also de.danet.an.workflow.util

Xdoclet-generated at April 14 2009

Inheritance Path. Section A.6.4, “Interface SimpleApplicationDirectory” [301]

A.6.4.2. infoByActivity(ActivityUniqueKey)

public SimpleApplicationInfo infoByActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException, RemoteException;

Parameters

auk the unique key of the activity an application instance is ex-
pected to be registered for.

return the info

Exceptions

InvalidKeyException if there is no data available for the given activity

Return the information associated with the activity.

A.6.4.3. infosByApplication(String)

public java.util.Collection infosByApplication(String applName)
throws RemoteException;

Interface SimpleApplicationDirectory

302

Parameters

applName the application name

return the infos as collection

Return infos associated with a given application.

A.6.4.4. infosByKey(String, String)

public java.util.Collection infosByKey(String applName,
String applInstKey)

throws InvalidKeyException, RemoteException;

Parameters

applName the application name

applInstKey the key associated with the instance

return the infos or an empty collection if no infos with the given ap-
plication name and key exist

Return the infos associated with the given application name and key.

A.6.4.5. infosByResource(String, String)

public java.util.Collection infosByResource(String applName,
String resourceKey)

throws RemoteException;

Parameters

applName the application name

resourceKey the resource's key

return the infos as collection

Return infos associated with a given application and resource.

A.6.4.6. instanceInfo(long)

public SimpleApplicationInfo instanceInfo(long instId)
throws InvalidKeyException, RemoteException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

Interface SimpleApplicationDirectory

303

return the info

Exceptions

InvalidKeyException if there is no data available for the given id

Return the information associated with the application instance.

A.6.4.7. registerInstance(String, Activity, Object, boolean)

public long registerInstance(String applName,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment)

throws RemoteException;

Parameters

applName the application name

activity the invoking activity

state the application state

saveAssignment if true the assigned resource will be saved to allow search-
ing application instances with a particular assignee

return the instance id

Register a new application instance. This method returns a unique key that can be used to re-
trieve , update and removeInstance(long) [305] remove the instance information.

A.6.4.8. registerInstance(String, String, Activity, Object, boolean)

public long registerInstance(String applName,
String applInstKey,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment)

throws RemoteException;

Parameters

applName the application name

applInstKey an arbitrary key for this instance, up to 1000 characters long

activity the invoking activity

state the application state

saveAssignment if true the assigned resource will be saved to allow search-
ing application instances with a particular assignee

Interface SimpleApplicationDirectory

304

return the instance id

Register a new application instance. This method returns a unique key that may be used to

A.6.4.9. removeInstance(long)

public void removeInstance(long instId)
throws RemoteException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

Remove an application instance.

A.6.4.10. updateInvokingActivity(long, ActivityUniqueKey)

public void updateInvokingActivity(long instId,
de.danet.an.workflow.api.ActivityUniqueKey auk)

throws InvalidKeyException, RemoteException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

auk the new activity's unique key. May be null if the application
instance is temporarily not associated with an activity.

Exceptions

InvalidKeyException if there is no application instance with the given id

Update the activity associated with the given application instance. This is useful if an application in-
stance is started by one tool (agent) invocation and stopped by another.

Be careful to ensure the eventual termination of the application. If the creating activity has com-
pleted, the terminate method of the tool agent that started the application will not be called on ab-
normal process completion. So, if a process is terminated abnormally and the starting activity is
closed and the stopping activity has not yet been started (and associated with the application) the ap-
plication will not be stopped. This should normally not be a problem for simple applications.

As a convenience, any application information that is still registered after a process completion will
automatically be deleted.

The new activity must belong to the same process as the activity that initially created the application
instance.

A.6.4.11. updateResourceKey(long, String)

public void updateResourceKey(long instId,

Interface SimpleApplicationDirectory

305

String resourceKey)
throws InvalidKeyException, RemoteException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

resourceKey the associated resource

Exceptions

InvalidKeyException if there is no application instance with the given id

Update the resource associated with the given application instance id.

A.6.4.12. updateState(long, Object)

public void updateState(long instId,
Object state)

throws InvalidKeyException, RemoteException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

state the new state

Exceptions

InvalidKeyException if there is no application instance with the given id

Update the state information associated with the given application instance id.

A.6.5. Class SimpleApplicationDirectoryEJB
This EJB provides a directory for simple applications. Applications are considered simple in this
context if their state can efficiently be represented (and stored) using a single serializable object.

This directory maps a unique id to the activity unique key information of the executing activity and
an associated state (and vice versa). Optionally, the assignment time and an assigned resource may
be saved in this directory as well.

A.6.5.1. Synopsis

public class de.danet.an.workflow.tools.util.SimpleApplicationDirectoryEJBimplements, javax.ejb.SessionBean {
// Public Constructors

public SimpleApplicationDirectoryEJB();

Class SimpleApplicationDirectoryEJB

306

// Public Methods

public void ejbActivate()
throws EJBException;

public void ejbCreate()
throws CreateException;

public void ejbPassivate()
throws EJBException;

public void ejbRemove();

public SimpleApplicationInfo infoByActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException;

public java.util.Collection infosByApplication(String applName);

public java.util.Collection infosByKey(String applName,
String applInstKey)

throws InvalidKeyException;

public java.util.Collection infosByResource(String applName,
String resourceKey);

public SimpleApplicationInfo instanceInfo(long instId)
throws InvalidKeyException;

public long registerInstance(String applName,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

public long registerInstance(String applName,
String applInstKey,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

public void removeInstance(long instId);

public void setSessionContext(javax.ejb.SessionContext context);

public void updateInvokingActivity(long instId,
de.danet.an.workflow.api.ActivityUniqueKey auk)

throws InvalidKeyException;

public void updateResourceKey(long instId,
String resourceKey)

throws InvalidKeyException;

public void updateState(long instId,
Object state)

throws InvalidKeyException;

Class SimpleApplicationDirectoryEJB

307

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

See Also de.danet.an.workflow.util

Ejb.bean name="SimpleApplicationDirectory" jndi-
name="ejb/@@@_JNDI_Name_Prefix_@@@SimpleApplic
ationDirectory" local-
jndi-
name="ejb/@@@_JNDI_Name_Prefix_@@@SimpleApplic
ationDirectoryLocal" display-name="Simple Application Dir-
ectory EJB" type="Stateless" transaction-type="Container"
view-type="both"

Jonas.bean ejb-name="SimpleApplicationDirectory"

Ejb.transaction type="Required"

Ejb.permission role-name="WfMOpenAdmin"

Ejb.ejb-external-ref ref-name="ejb/JdbcKeyGenLocal" link="KeyGen"
type="Session" view-type="local"
home="de.danet.an.util.KeyGenLocalHome" busi-
ness="de.danet.an.util.KeyGenLocal"

Ejb.resource-ref res-ref-name="jdbc/WfEngine" res-
type="javax.sql.DataSource" res-auth="Container"

Jonas.resource res-ref-name="jdbc/WfEngine" jndi-name="jdbc_1"

Weblogic.enable-call-by-reference True

Weblogic.resource-description res-ref-name="jdbc/WfEngine" jndi-name="DefaultDS"

Weblogic.transaction-isolation TRANSACTION_READ_COMMITTED

Inheritance Path. java.lang.Object-> Section A.6.5, “Class SimpleApplicationDirectoryEJB” [306]

A.6.5.2. SimpleApplicationDirectoryEJB()

public SimpleApplicationDirectoryEJB();

Creates an instance of SimpleApplicationDirectoryEJB with all attributes initialized to
default values.

A.6.5.3. ejbActivate()

public void ejbActivate()
throws EJBException;

Specified by: Method ejbActivate in interface SessionBean

See Also javax.ejb.SessionBean

Not called for stateless session beans.

Class SimpleApplicationDirectoryEJB

308

A.6.5.4. ejbCreate()

public void ejbCreate()
throws CreateException;

Exceptions

CreateException if creation fails

Create a new EJB.

A.6.5.5. ejbPassivate()

public void ejbPassivate()
throws EJBException;

Specified by: Method ejbPassivate in interface SessionBean

See Also javax.ejb.SessionBean

Not called for stateless session beans.

A.6.5.6. ejbRemove()

public void ejbRemove();

Specified by: Method ejbRemove in interface SessionBean

Remove this EJB.

A.6.5.7. infoByActivity(ActivityUniqueKey)

public SimpleApplicationInfo infoByActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException;

Parameters

auk the unique key of the activity an application instance is ex-
pected to be registered for.

return the info

Exceptions

InvalidKeyException if there is no data available for the given activity

Ejb.interface-method view-type="both"

Class SimpleApplicationDirectoryEJB

309

Return the information associated with the activity.

A.6.5.8. infosByApplication(String)

public java.util.Collection infosByApplication(String applName);

Parameters

applName the application name

return the infos as collection

Ejb.interface-method view-type="both"

Return infos associated with a given application.

A.6.5.9. infosByKey(String, String)

public java.util.Collection infosByKey(String applName,
String applInstKey)

throws InvalidKeyException;

Parameters

applName the application name

applInstKey the key associated with the instance

return the infos or an empty collection if no infos with the given ap-
plication name and key exist

Ejb.interface-method view-type="both"

Return the infos associated with the given application name and key.

A.6.5.10. infosByResource(String, String)

public java.util.Collection infosByResource(String applName,
String resourceKey);

Parameters

applName the application name

resourceKey the resource's key

return the infos as collection

Class SimpleApplicationDirectoryEJB

310

Ejb.interface-method view-type="both"

Return infos associated with a given application and resource.

A.6.5.11. instanceInfo(long)

public SimpleApplicationInfo instanceInfo(long instId)
throws InvalidKeyException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

return the info

Exceptions

InvalidKeyException if there is no data available for the given id

Ejb.interface-method view-type="both"

Return the information associated with the application instance.

A.6.5.12. registerInstance(String, Activity, Object, boolean)

public long registerInstance(String applName,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

Parameters

applName the application name

activity the invoking activity

state the application state

saveAssignment if true the assigned resource will be saved to allow search-
ing application instances with a particular assignee

return the instance id

Ejb.interface-method view-type="both"

Register a new application instance. This method returns a unique key that can be used to re-
trieve , update and removeInstance(long) [312] remove the instance information.

Class SimpleApplicationDirectoryEJB

311

A.6.5.13. registerInstance(String, String, Activity, Object, boolean)

public long registerInstance(String applName,
String applInstKey,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

Parameters

applName the application name

applInstKey an arbitrary key for this instance, up to 1000 characters long

activity the invoking activity

state the application state

saveAssignment if true the assigned resource will be saved to allow search-
ing application instances with a particular assignee

return the instance id

Ejb.interface-method view-type="both"

Register a new application instance. This method returns a unique key that may be used to

A.6.5.14. removeInstance(long)

public void removeInstance(long instId);

Parameters

instId the application instance id previously assigned by regis-
terInstance

Ejb.interface-method view-type="both"

Remove an application instance.

A.6.5.15. setSessionContext(SessionContext)

public void setSessionContext(javax.ejb.SessionContext context);

Specified by: Method setSessionContext in interface SessionBean

Parameters

context the context

Class SimpleApplicationDirectoryEJB

312

Save the session context asigned by the container.

A.6.5.16. updateInvokingActivity(long, ActivityUniqueKey)

public void updateInvokingActivity(long instId,
de.danet.an.workflow.api.ActivityUniqueKey auk)

throws InvalidKeyException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

auk the new activity's unique key. May be null if the application
instance is temporarily not associated with an activity.

Exceptions

InvalidKeyException if there is no application instance with the given id

Ejb.interface-method view-type="both"

Update the activity associated with the given application instance. This is useful if an application in-
stance is started by one tool (agent) invocation and stopped by another.

Be careful to ensure the eventual termination of the application. If the creating activity has com-
pleted, the terminate method of the tool agent that started the application will not be called on ab-
normal process completion. So, if a process is terminated abnormally and the starting activity is
closed and the stopping activity has not yet been started (and associated with the application) the ap-
plication will not be stopped. This should normally not be a problem for simple applications.

As a convenience, any application information that is still registered after a process completion will
automatically be deleted.

The new activity must belong to the same process as the activity that initially created the application
instance.

A.6.5.17. updateResourceKey(long, String)

public void updateResourceKey(long instId,
String resourceKey)

throws InvalidKeyException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

resourceKey the associated resource

Exceptions

Class SimpleApplicationDirectoryEJB

313

InvalidKeyException if there is no application instance with the given id

Ejb.interface-method view-type="both"

Update the resource associated with the given application instance id.

A.6.5.18. updateState(long, Object)

public void updateState(long instId,
Object state)

throws InvalidKeyException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

state the new state

Exceptions

InvalidKeyException if there is no application instance with the given id

Ejb.interface-method view-type="both"

Update the state information associated with the given application instance id.

A.6.6. Interface SimpleApplicationDirectoryHome
Home interface for SimpleApplicationDirectory.

A.6.6.1. Synopsis

public interface de.danet.an.workflow.tools.util.SimpleApplicationDirectoryHome extends, javax.ejb.EJBHome {
// Public Static Fields

public static final String COMP_NAME = java:comp/env/ejb/SimpleApplicationDirectory;

public static final String JNDI_NAME = ejb/@@@_JNDI_Name_Prefix_@@@SimpleApplicationDirectory;

// Public Methods

public SimpleApplicationDirectory create()
throws CreateException, RemoteException;

}

See Also de.danet.an.workflow.util

Xdoclet-generated at April 14 2009

Interface SimpleApplicationDirectory-
Home

314

Inheritance Path. Section A.6.6, “Interface SimpleApplicationDirectoryHome” [314]

A.6.7. Interface SimpleApplicationDirectoryLocal
Local interface for SimpleApplicationDirectory.

A.6.7.1. Synopsis

public interface de.danet.an.workflow.tools.util.SimpleApplicationDirectoryLocal extends, javax.ejb.EJBLocalObject {
// Public Methods

public SimpleApplicationInfo infoByActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException;

public java.util.Collection infosByApplication(String applName);

public java.util.Collection infosByKey(String applName,
String applInstKey)

throws InvalidKeyException;

public java.util.Collection infosByResource(String applName,
String resourceKey);

public SimpleApplicationInfo instanceInfo(long instId)
throws InvalidKeyException;

public long registerInstance(String applName,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

public long registerInstance(String applName,
String applInstKey,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

public void removeInstance(long instId);

public void updateInvokingActivity(long instId,
de.danet.an.workflow.api.ActivityUniqueKey auk)

throws InvalidKeyException;

public void updateResourceKey(long instId,
String resourceKey)

throws InvalidKeyException;

public void updateState(long instId,
Object state)

throws InvalidKeyException;

}

See Also de.danet.an.workflow.util

Interface SimpleApplicationDirectory-
Local

315

Xdoclet-generated at April 14 2009

Inheritance Path. Section A.6.7, “Interface SimpleApplicationDirectoryLocal” [315]

A.6.7.2. infoByActivity(ActivityUniqueKey)

public SimpleApplicationInfo infoByActivity(de.danet.an.workflow.api.ActivityUniqueKey auk)
throws InvalidKeyException;

Parameters

auk the unique key of the activity an application instance is ex-
pected to be registered for.

return the info

Exceptions

InvalidKeyException if there is no data available for the given activity

Return the information associated with the activity.

A.6.7.3. infosByApplication(String)

public java.util.Collection infosByApplication(String applName);

Parameters

applName the application name

return the infos as collection

Return infos associated with a given application.

A.6.7.4. infosByKey(String, String)

public java.util.Collection infosByKey(String applName,
String applInstKey)

throws InvalidKeyException;

Parameters

applName the application name

applInstKey the key associated with the instance

return the infos or an empty collection if no infos with the given ap-
plication name and key exist

Interface SimpleApplicationDirectory-
Local

316

Return the infos associated with the given application name and key.

A.6.7.5. infosByResource(String, String)

public java.util.Collection infosByResource(String applName,
String resourceKey);

Parameters

applName the application name

resourceKey the resource's key

return the infos as collection

Return infos associated with a given application and resource.

A.6.7.6. instanceInfo(long)

public SimpleApplicationInfo instanceInfo(long instId)
throws InvalidKeyException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

return the info

Exceptions

InvalidKeyException if there is no data available for the given id

Return the information associated with the application instance.

A.6.7.7. registerInstance(String, Activity, Object, boolean)

public long registerInstance(String applName,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

Parameters

applName the application name

activity the invoking activity

state the application state

Interface SimpleApplicationDirectory-
Local

317

saveAssignment if true the assigned resource will be saved to allow search-
ing application instances with a particular assignee

return the instance id

Register a new application instance. This method returns a unique key that can be used to re-
trieve , update and removeInstance(long) [318] remove the instance information.

A.6.7.8. registerInstance(String, String, Activity, Object, boolean)

public long registerInstance(String applName,
String applInstKey,
de.danet.an.workflow.api.Activity activity,
Object state,
boolean saveAssignment);

Parameters

applName the application name

applInstKey an arbitrary key for this instance, up to 1000 characters long

activity the invoking activity

state the application state

saveAssignment if true the assigned resource will be saved to allow search-
ing application instances with a particular assignee

return the instance id

Register a new application instance. This method returns a unique key that may be used to

A.6.7.9. removeInstance(long)

public void removeInstance(long instId);

Parameters

instId the application instance id previously assigned by regis-
terInstance

Remove an application instance.

A.6.7.10. updateInvokingActivity(long, ActivityUniqueKey)

public void updateInvokingActivity(long instId,
de.danet.an.workflow.api.ActivityUniqueKey auk)

throws InvalidKeyException;

Parameters

Interface SimpleApplicationDirectory-
Local

318

instId the application instance id previously assigned by regis-
terInstance

auk the new activity's unique key. May be null if the application
instance is temporarily not associated with an activity.

Exceptions

InvalidKeyException if there is no application instance with the given id

Update the activity associated with the given application instance. This is useful if an application in-
stance is started by one tool (agent) invocation and stopped by another.

Be careful to ensure the eventual termination of the application. If the creating activity has com-
pleted, the terminate method of the tool agent that started the application will not be called on ab-
normal process completion. So, if a process is terminated abnormally and the starting activity is
closed and the stopping activity has not yet been started (and associated with the application) the ap-
plication will not be stopped. This should normally not be a problem for simple applications.

As a convenience, any application information that is still registered after a process completion will
automatically be deleted.

The new activity must belong to the same process as the activity that initially created the application
instance.

A.6.7.11. updateResourceKey(long, String)

public void updateResourceKey(long instId,
String resourceKey)

throws InvalidKeyException;

Parameters

instId the application instance id previously assigned by regis-
terInstance

resourceKey the associated resource

Exceptions

InvalidKeyException if there is no application instance with the given id

Update the resource associated with the given application instance id.

A.6.7.12. updateState(long, Object)

public void updateState(long instId,
Object state)

throws InvalidKeyException;

Parameters

Interface SimpleApplicationDirectory-
Local

319

instId the application instance id previously assigned by regis-
terInstance

state the new state

Exceptions

InvalidKeyException if there is no application instance with the given id

Update the state information associated with the given application instance id.

A.6.8. Interface SimpleApplicationDirectoryLocalHome
Local home interface for SimpleApplicationDirectory.

A.6.8.1. Synopsis

public interface de.danet.an.workflow.tools.util.SimpleApplicationDirectoryLocalHome extends, javax.ejb.EJBLocalHome {
// Public Static Fields

public static final String COMP_NAME = java:comp/env/ejb/SimpleApplicationDirectoryLocal;

public static final String JNDI_NAME = ejb/@@@_JNDI_Name_Prefix_@@@SimpleApplicationDirectoryLocal;

// Public Methods

public SimpleApplicationDirectoryLocal create()
throws CreateException;

}

See Also de.danet.an.workflow.util

Xdoclet-generated at April 14 2009

Inheritance Path. Section A.6.8, “Interface SimpleApplicationDirectoryLocalHome” [320]

A.6.9. Class SimpleApplicationDirectoryLookup
This class provides a Batch implementation that looks up and returns the remote interface of the
SimpleApplicationDirectory .

A.6.9.1. Synopsis

public class de.danet.an.workflow.tools.util.SimpleApplicationDirectoryLookupimplements, de.danet.an.workflow.api.Batch, java.io.Serializable {
// Public Constructors

public SimpleApplicationDirectoryLookup();

// Public Methods

public Object execute(de.danet.an.workflow.api.Batch.Context ctx)
throws InvocationTargetException;

}

Interface SimpleApplicationDirectory-
LocalHome

320

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.6.9, “Class SimpleApplicationDirectoryLookup”
[320]

A.6.9.2. execute(Batch.Context)

public Object execute(de.danet.an.workflow.api.Batch.Context ctx)
throws InvocationTargetException;

Specified by: Method execute in interface Batch

Parameters

ctx the execution context

return the result as defined by the implementing class

Exceptions

InvocationTargetExcep-
tion

wraps exceptions as defined by the implementing class

Description copied from interface: <link
linkend="METHOD-DE.DANET.AN.WORKFLOW.API.BATCH.EXECUTE-DE.DANET.AN.WORKFL
OW.API.BATCH.CONTEXT-">execute</link>

Execute the batch.

A.6.10. Class SimpleApplicationInfo
This class provides a container for the application instance information managed by the Simple-
ApplicationDirectory .

A.6.10.1. Synopsis

public class de.danet.an.workflow.tools.util.SimpleApplicationInfoimplements, java.io.Serializable {
// Public Methods

public de.danet.an.workflow.api.ActivityUniqueKey activityUniqueKey();

public java.util.Date assignedAt();

public long id();

public String resourceKey();

public Object state();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,

Class SimpleApplicationInfo

321

hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> Section A.6.10, “Class SimpleApplicationInfo” [321]

A.6.10.2. activityUniqueKey()

public de.danet.an.workflow.api.ActivityUniqueKey activityUniqueKey();

Parameters

return activity's unique key

Return the activity unique key.

A.6.10.3. assignedAt()

public java.util.Date assignedAt();

Parameters

return assignment timestamp

Return the assignment timestamp.

A.6.10.4. id()

public long id();

Parameters

return instance id

Return the application instance id.

A.6.10.5. resourceKey()

public String resourceKey();

Parameters

return assigned resource key

Return the assigned resource.

A.6.10.6. state()

public Object state();

Class SimpleApplicationInfo

322

Parameters

return application state

Return the application state.

Class SimpleApplicationInfo

323

324

Appendix B. The service provider
classes
B.1. Package
de.danet.an.workflow.ejbs.client

This package contains client side helper classes used to access the EJBs.

B.1.1. Additional Information

Since V1.0

B.1.2. Class StandardWorkflowServiceFactory
Implements the workflow service factory.

Usage of this class as service factory requires an additional configuration parameter. The service
factory implementation needs to connect to the workflow engine EJB. In order to do so, it needs a
JNDI name to look up the engine's home interface. As JNDI names must be changeable by the ap-
plication deployer, the name can't be hard coded.

This factory therefore uses the following ordered lookup procedure to determine the JNDI name of
the workflow engine EJB home interface:

• Look for a property " de.danet.an.workflow.engine " among the properties set for this
factory.

• Look for a name in java:comp/env/de.danet.an.workflow.engine . The configura-
tion for the StandardWorkflowServiceFactory using this mechanism thus looks like:

<env-entry>
<description>Configure the chosen factory</description>
<env-entry-name>de.danet.an.workflow.engine</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

JNDI name of workflow engine EJB home
</env-entry-value>
</env-entry>

Note that this environment entry must be inserted in the ejb-jar.xml or web.xml for every
EJB resp. servlet that calls the <code>newInstance</code> method of WorkflowService-
Factory .

• Find the application resource file de.danet.an.workflow-wfs.properties and look
for an entry " engine = JNDI name of workflow engine EJB home ".

B.1.2.1. Synopsis

public class de.danet.an.workflow.ejbs.client.StandardWorkflowServiceFactory extends, WorkflowServiceFactory {
// Public Constructors

public StandardWorkflowServiceFactory();

325

// Public Methods

public WorkflowService newWorkflowService()
throws FactoryConfigurationError;

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> WorkflowServiceFactory->
de.danet.an.workflow.ejbs.client.StandardWorkflowServiceFactory [325]

B.1.2.2. StandardWorkflowServiceFactory()

public StandardWorkflowServiceFactory();

Creates an instance of StandardWorkflowServiceFactory and looks up the associated
EJB.

B.2. Package
de.danet.an.workflow.assignment

This package provides a simple resource assignment service as specified by
de.danet.an.workflow.spis.ras . It is independant of a specific resource management
service, as it uses only the service API defined by de.danet.an.workflow.rms to access a
resource management system.

The service is implemented by the class StandardResourceAssignmentService . It acts as
a front-end (client) for the server-side component (back-end). The server-side component is
provided by the AssignmentServiceEJB .

Package
de.danet.an.workflow.assignment

326

B.2.1. Additional Information

Since 1.0

B.2.2. Class StandardResourceAssignmentService-
Factory

Implements a simple resource assignment service factory.

This implementation uses an instance of <code>ResourceManagementService</code> to access a
resource management facility. To obtain the service it calls the <code>newInstance</code> method
of <code>ResourceManagementServiceFactory</code>. Thus if this factory (StandardRe-
sourceAssignmentServiceFactory) is configured as resource assignment service factory,
all configuration information required by ResourceManagementServiceFact-
ory.newInstance (and by the actually configured resource management service factory imple-
mentation) must be available when the <code>newInstance</code> method of ResourceAs-
signmentServiceFactory is called.

B.2.2.1. Synopsis

public class de.danet.an.workflow.assignment.StandardResourceAssignmentServiceFactory extends, ResourceAssignmentServiceFactory {
// Public Constructors

public StandardResourceAssignmentServiceFactory()

Additional Information

327

throws FactoryConfigurationError;

// Public Methods

public boolean equals(Object obj);

public int hashCode();

public ResourceAssignmentService newResourceAssignmentService()
throws FactoryConfigurationError;

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> ResourceAssignmentServiceFactory->
de.danet.an.workflow.assignment.StandardResourceAssignmentServiceFactory [327]

B.2.2.2. StandardResourceAssignmentServiceFactory()

public StandardResourceAssignmentServiceFactory()
throws FactoryConfigurationError;

Exceptions

FactoryConfigurationErr-
or

if the required resources cannot be obtained.

Constructor.

B.2.2.3. equals(Object)

public boolean equals(Object obj);

Parameters

obj the factory to compare with.

return true if the objects are equal.

Two resource assignment service factories are equal if they are identically configured.

B.2.2.4. hashCode()

public int hashCode();

Parameters

return the hash code.

Class StandardResourceAssignment-
ServiceFactory

328

Generate a hash code.

B.3. Package
de.danet.an.workflow.rmsimpls.dbrms
B.3.1. Class DatabaseRmsFactory

This class provides an implementaion of the factory API based on information obtained from a data-
base.

Usage of this class as service factory requires several configuration parameters for accessing the
database. The factory uses the following ordered lookup procedure to determine these parameters:

• Look for parameters in JNDI. Lookup parameters in
java:comp/env/de.danet.an.workflow.rmsimpls.dbrms.parameter . The
configuration for a parameter using this mechanism thus looks like:

<env-entry>
<description>Configure database parameter

parameter
</description>

<env-entry-name>de.danet.an.workflow.rmsimpls.dbrms.
parameter

</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

Value of parameter
</env-entry-value>
</env-entry>

Note that the environment entries must be inserted in the ejb-jar.xml or web.xml for every
EJB resp. servlet that calls the <code>newInstance</code> method of ResourceManage-
mentServiceFactory .

• Find the application resource file
de.danet.an.workflow.rmsimpls.dbrms-factory.properties and look for
entries " parameter = Value of parameter ".

The following parameters are used:

dataSource The lookup name of the data source in JNDI (e.g.
java:/DefaultDS).

allUsersQuery The query that returns the known users as a two column result
with the user's entry's primary key in the first column and the
user's display name in the second.

allRolesQuery The query that returns the known roles as a two column result
with the role's entry's primary key in the first column and the
role's display name in the second.

allGroupsQuery The query that returns the known groups as a two column res-
ult with the group's entry's primary key in the first column
and group's display name in the second.

userNameQuery The query that returns user data as a single column result with
the user's display name in the only column. The user's entry's

Package
de.danet.an.workflow.rmsimpls.dbrms

329

primary key is set as query parameter.

roleNameQuery The query that returns role data as a single column result with
the role's display name in the only column. The role's entry's
primary key is set as query parameter.

groupNameQuery The query that returns group data as a single column result
with the group's display name in the only column. The
group's entry's primary key is set as query parameter.

userLookupQuery The query that returns a user's data as a two column result
with the user's entry's primary key in the first column and the
user's display name in the second. The user's account name
(usually the login name) is set as query parameter.

roleLookupQuery The query that returns a role's data as a two column result
with the role's entry's primary key in the first column and the
role's display name in the second. The role's "account" name
(clear text name) is set as query parameter.

groupLookupQuery The query that returns a group's data as a two column result
with the group's entry's primary key in the first column and
the group's name display in the second. The groups's "ac-
count" name (clear text name) is set as query parameter.

rolesQuery The query that returns a user's roles as a two column result
with the role's entry's primary key in the first column and the
role's display name in the second. The user's entry's primary
key is set as query parameter.

groupsQuery The query that returns a user's groups as a two column result
with the group's entry's primary key in the first column and
the group's display name in the second. The user's entry's
primary key is set as query parameter.

B.3.1.1. Synopsis

public class de.danet.an.workflow.rmsimpls.dbrms.DatabaseRmsFactory extends, ResourceManagementServiceFactory {
// Public Constructors

public DatabaseRmsFactory()
throws FactoryConfigurationError;

// Public Methods

public ResourceManagementService newResourceManagementService()
throws FactoryConfigurationError;

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> ResourceManagementServiceFactory->
de.danet.an.workflow.rmsimpls.dbrms.DatabaseRmsFactory [329]

B.3.1.2. DatabaseRmsFactory()

public DatabaseRmsFactory()
throws FactoryConfigurationError;

Class DatabaseRmsFactory

330

Exceptions

FactoryConfigurationErr-
or

if configuration information is missing or invalid.

Create a new instance of this factory.

B.4. Package
de.danet.an.workflow.rmsimpls.eisrms
B.4.1. Class EisRmsFactory

This class provides an implementaion of the factory API based on information obtained from an
RMS resource adapter.

The resource adapter must provide the RmsConnectionFactory . The factory is obtained from
JNDI using the logical name java:comp/env/ra/RMS . This is the only configuration option of
this resource management service factory, as anything else is configured using properties of the re-
source adapter.

B.4.1.1. Synopsis

public class de.danet.an.workflow.rmsimpls.eisrms.EisRmsFactory extends, ResourceManagementServiceFactory {
// Public Constructors

public EisRmsFactory()
throws FactoryConfigurationError;

// Public Methods

public ResourceManagementService newResourceManagementService()
throws FactoryConfigurationError;

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> ResourceManagementServiceFactory->
de.danet.an.workflow.rmsimpls.eisrms.EisRmsFactory [331]

B.4.1.2. EisRmsFactory()

public EisRmsFactory()
throws FactoryConfigurationError;

Exceptions

FactoryConfigurationErr-
or

if configuration information is missing or invalid.

Create a new instance of this factory.

B.5. Package

Package
de.danet.an.workflow.rmsimpls.eisrm

331

de.danet.an.workflow.rmsimpls.eisrms.aci
This package defines the client API of the resource adapter modules for the EIS RMS.

B.5.1. Additional Information

Since V1.4

B.5.2. Interface RmsConnection
This interface defines a connection to a resource management system accessed via JCA.

B.5.2.1. Synopsis

public interface de.danet.an.workflow.rmsimpls.eisrms.aci.RmsConnection extends, java.io.Serializable {
// Public Methods

public java.util.Collection authorizers(String key)
throws ResourceException;

public void close()
throws ResourceException;

public java.util.Collection listResources()
throws ResourceException;

public RmsEntry lookupResource(String key)
throws ResourceException, NameNotFoundException;

public RmsEntry lookupUserByAccountName(String name)
throws ResourceException, NameNotFoundException;

public java.util.Collection selectResources(Object resSel)
throws ResourceException;

}

Inheritance Path. de.danet.an.workflow.rmsimpls.eisrms.aci.RmsConnection [332]

B.5.2.2. authorizers(String)

public java.util.Collection authorizers(String key)
throws ResourceException;

Parameters

key the resource's key

return a collection of RmsEntry objects, not including the resource
identified by the key

Exceptions

Additional Information

332

ResourceException if an error occurs

Given a resource's key, return the collection of resource entries this resource is authorized for.

This method usually returns all groups a user is a member of and all roles assigned to a user.

B.5.2.3. close()

public void close()
throws ResourceException;

Close the connection.

B.5.2.4. listResources()

public java.util.Collection listResources()
throws ResourceException;

Exceptions

ResourceException if an error occurs

List all available resources.

B.5.2.5. lookupResource(String)

public RmsEntry lookupResource(String key)
throws ResourceException, NameNotFoundException;

Parameters

type the key

name the name

Find a resource given its key.

B.5.2.6. lookupUserByAccountName(String)

public RmsEntry lookupUserByAccountName(String name)
throws ResourceException, NameNotFoundException;

Parameters

name the name

Find a user given its account (login) name.

B.5.2.7. selectResources(Object)

s

333

public java.util.Collection selectResources(Object resSel)
throws ResourceException;

Parameters

resSel an object that describes resource selection criteria

return collection of RmsEntry objects

Exceptions

UnsupportedOperationEx-
ception

if the resource management service does not support this fea-
ture.

ResourceException if an error occurs

This optional method selects resources based on the resource selection criteria passed as parameter.

Usually, criteria for the resource selection must be determined within the resource assignment,
based on the list of resources obtained with listResources . Implementations of resource man-
agement facilities may, however, support some query functionality that eases this task for the re-
source assignment service. The resource assignment service may have received such resource selec-
tion information from the workflow engine via <code>autoAssignResources</code> (the workflow
component has obtained the information propably as part of the process description and passed it
through transparently).

B.5.3. Interface RmsConnectionFactory
This interface defines a factory for connections to a resource management system accessed via JCA.

B.5.3.1. Synopsis

public interface de.danet.an.workflow.rmsimpls.eisrms.aci.RmsConnectionFactory extends, java.io.Serializable {
// Public Methods

public RmsConnection getConnection()
throws ResourceException;

}

Inheritance Path. de.danet.an.workflow.rmsimpls.eisrms.aci.RmsConnectionFactory [334]

B.5.4. Class RmsEntry
This class describes a resource.

B.5.4.1. Synopsis

public final class de.danet.an.workflow.rmsimpls.eisrms.aci.RmsEntryimplements, java.io.Serializable {
// Public Static Fields

public static final int RESOURCE_TYPE_GROUP = 2;

public static final int RESOURCE_TYPE_ROLE = 3;

Interface RmsConnectionFactory

334

public static final int RESOURCE_TYPE_USER = 1;

// Public Constructors

public RmsEntry(int type,
String key,
String displayName);

// Public Methods

public String getDisplayName();

public String getKey();

public int getType();

}

Methods inherited from java.lang.Object : clone , equals , finalize , getClass ,
hashCode , notify , notifyAll , toString , wait

Inheritance Path. java.lang.Object-> de.danet.an.workflow.rmsimpls.eisrms.aci.RmsEntry [334]

B.5.4.2. RmsEntry(int, String, String)

public RmsEntry(int type,
String key,
String displayName);

Parameters

type
key
name

B.5.4.3. getDisplayName()

public String getDisplayName();

Parameters

return Returns the name.

B.5.4.4. getKey()

public String getKey();

Parameters

return Returns the key.

Class RmsEntry

335

B.5.4.5. getType()

public int getType();

Parameters

return Returns the type.

Class RmsEntry

336

Appendix C. The demo applications
To support new users in getting acquainted with Danet's workflow component, we provide applica-
tions that bundle the workflow component with a sample portal. The portal includes the manage-
ment portlets and the XForms tool on pre-configured pages.

Obviously, there are various configuration options for such a sample application, beginning with the
choice of the portal. These options would soon lead to an unmanageable number of EAR files in the
distribution. To avoid this, we have provided an installer that configures and deployes a demo ap-
plication of your choice. It does this using ant build files that may serve as a good starting point for
your own application. If you're interested, have a look at the sources (or unpack the installer, and
look at the demos subfolder).

C.1. Installing a demo application
The installation consists of the following steps:

• Download and unpack JBoss 4.0.4.GA or later.

• Create a JBoss server configuration for the demo.

• Create the datasource for the demo, initialize the database and create and deploy the demo.

C.1.1. Installing JBoss
There isn't much to add to the title. Download the binaries and unpack them. The root directory of
the unpacked binaries (usually something like jboss-n.m.o) will be referred to as
$JBOSS_HOME below.

C.1.2. Create JBoss server configuration
A JBoss server can have several configurations. As distributed, it has the predefined configuration
"default", "minimal" and "all". We follow the good practice of creating our own configuration. This
leaves the JBoss distribution intact and you don't have to unpack a complete JBoss for every applic-
ation environment that you want to experiment with.

The server configuration can be created by the installer. The installer is distributed as an executable
jar. It is invoked as "java -jar wfmopen-n.m-installer.jar". To create the server configura-
tion, select "Create JBoss configuration" and proceed.

337

Figure C.1. Create JBoss configuration

The next screen prompts you for your JBoss installation directory, i.e. $JBOSS_HOME, and the con-
figuration you want to create. The new configuration is created in $JBOSS_HOME/server/con-
figuration as a copy of $JBOSS_HOME/server/default. The default configuration
should therefore not have been modified since unpacking JBoss.

Create JBoss server configuration

338

Figure C.2. JBoss installation directory

In addition to copying the default configuration, the installer can add database drivers, enable Xid
padding (required for e.g. Oracle) and add a sample Liferay portal to the new JBoss configuration.

Figure C.3. Liferay configuration options

If you choose to add Liferay to the new JBoss configuration you will be prompted for a directory
with some files from the Liferay distribution. You have to download these files yourself from the
Liferay distribution site ht-
tp://sourceforge.net/project/showfiles.php?group_id=49260&package_id=42607 as they are not
bundled with the installer.

Eventually, the installer provides somes hints about how to start the new JBoss configuration, cre-
ates the configuration and exists. You must now start JBoss with the newly created configuration
and, if the output indicates no errors, restart the installer.

The reason why the installation is done in two steps is that the second step needs a running JBoss
server.

C.1.3. Creating datasources etc.
Restart the installer and proceed with "Setup database ...".

Creating datasources etc.

339

http://sourceforge.net/project/showfiles.php?group_id=49260&package_id=42607
http://sourceforge.net/project/showfiles.php?group_id=49260&package_id=42607

Figure C.4. Setup wfdemo configuration

You'll have to enter your $JBOSS_HOME/server/configuration directory once more on
the next screen, as the installer cannot currently remember this setting from the first step.

Figure C.5. JBoss configuration directory

Creating datasources etc.

340

The WfMOpen components require a datasource. The name of the datasource is set in the applica-
tion server specific configuration files of the EJBs and may, of course, be changed there. It defaults
to "WfMOpenDS" and the installer can create a matching datasource configuration in JBoss for sev-
eral RDBMS types. Unless your database is not supported, or you want to do it by hand for some
other reason, you should check this option and select your RDBMS type as described below.

Figure C.6. Advanced installation options

WfMOpen requires the existance of several tables (a.k.a schema) in the database. The installer can
create and initialize these tables for all databases supported by the Apache DDLUtils. Normally, you
should leave this option checked.

Finally you have to select your RDBMS type. If your RDBMS is listed, the installer supports data-
source creation and it will continue with simplified screens for the specification of the database in-
stance. If you select "Other", it continues with generic screens that allow you to specifiy the para-
meters for JDBC setup and schema initialization.

After prompting for the information for datasource creation and schema initialization, you may now
choose the demo application to deploy.

Creating datasources etc.

341

Figure C.7. Choose demo application

If you select "Pluto based demo", no further information is required. The Pluto based demo provides
a minimal portlet container that allows a set of portlets to be used almost as a stand-alone applica-
tion. The next screen will simply provide some information where to point your browser at after the
installation and you can proceed to the execution of the installation.

If you choose "Liferay based demo", the portlets will be configured for a Liferay portal. The Liferay
portal must previously have been configured e.g. using the installer option described above.

C.1.4. Working with the Pluto based demo
You can find more information about the Pluto potal driver on its home page (see Apache Pluto site
[http://portals.apache.org/pluto/v101/userguide/portal.html]). Basically, the demo uses the portal
driver as described. The main difference is that we have added a login page to establich a user's
identity.

As the Pluto portal driver (being a minimal implementation of a portal) does not include user man-
agement, we have resorted to simple file based management for this demo. You find the configured
users and groups in
$JBOSS_HOME/server/wfdemo/config/wfdemopluto-*.properties. The files wf-
demopluto-users.properties and wfdemopluto-roles.properties use the format
described for the JBoss file based authentication module (see
org.jboss.security.auth.spi.UsersRolesLoginModule [ht-
tp://docs.jboss.com/jbossas/admindevel326/html/ch8.chapter.html#d0e16599]) and are used by
JBoss to verify credentials and assign roles (see application policy "wfdemopluto" in
$JBOSS_HOME/server/configuration/config/login-config.properties)

The mentioned files and the additional file wfdemopluto-groups.properties are also used
by the resource management system configured for the demo (see Section 6.3, “The underlying re-
source management service” [66], Section 6.4.2, “EIS based RMSes” [67] and Section 6.4.2.2.1,
“Properties based resource adapter” [67]). So all users, groups and roles configured in these files are
available for activity assignments in the workflow.

Working with the Pluto based demo

342

http://portals.apache.org/pluto/v101/userguide/portal.html
http://portals.apache.org/pluto/v101/userguide/portal.html
http://docs.jboss.com/jbossas/admindevel326/html/ch8.chapter.html#d0e16599
http://docs.jboss.com/jbossas/admindevel326/html/ch8.chapter.html#d0e16599
http://docs.jboss.com/jbossas/admindevel326/html/ch8.chapter.html#d0e16599

C.1.5. Working with the Liferay based demo
Liferay is a full fledged portal that comes with its own user management facility.

Liferay does not maintain different roles on the J2EE level. I.e. neither Liferay groups nor Liferay
roles are mapped to roles in the J2EE environment. Instead Liferay makes all users member of a
single role "user". The configuration created by the installer therefore reduces the security contraints
on the workflow engine EJBs to mamabership in role "user", i.e. all Liferay portal users are by de-
fault allowed to access the EJBs.

Working with the Liferay based demo

343

344

1JBoss' approach to provide Hibernate functionality as (non-standard) part of the container may be convenient under certain
circumstances, but it may also lead to conflicts with Hibernate libraries provided by deployments (e.g. Liferay comes with a
specific Hibernate version).
2We unpack the EAR (and embedded components, see below) partially because this allows easier access to some configura-
tion files that we have to adapt.
3If you use Windows, you may experience problems with filenames being too long. This happens if the length of the path to
your JBoss installation exceeds a certain limit. As a workaround, create the directory liferay-portal.ear/ in the top-
level directory of your drive, unpack the EAR into it, and then move it to $JBOSS_HOME/server/configuration/
deploy/.

Appendix D. Installing Liferay
The Liferay Portal [http://www.liferay.com] comes with installation instructions for JBoss. We
think that these instructions do not lead to the best result. They imply changes to the base JBoss con-
figuration that are confusing for the casual JBoss user and that are not really necessary. We there-
fore provide in this chapter modified installation instructions that we use to setup a Liferay Portal.

D.1. Creating a configuration
A JBoss server can have several configurations. As distributed, it has the predefined configuration
"default", "minimal" and "all". We follow the good practice of creating our own configuration. This
leaves the JBoss distribution intact and you don't have to unpack a complete JBoss for every applic-
ation environment that you want to experiment with.

As a first step, we create a configuration for the Liferay Portal. Create a new directory
$JBOSS_HOME/server/configuration using e.g. "liferay" for configuration.
Copy the complete content of your start configuration (typically
$JBOSS_HOME/server/default/) to this newly created directory.

Remove file $JBOSS_HOME/server/configuration/lib/hibernate3.jar1.

D.2. Deploying Liferay
D.2.1. Disabling the default root context application

Rename $JBOSS_HOME/server/configuration/de-
ploy/jbossweb-tomcat55.sar/ROOT.war to ROOT.war.sav (or delete it).

D.2.2. Unpacking the JBoss extension libraries
Go to directory $JBOSS_HOME/server/configuration/lib/ and unpack the file
liferay-portal-dependencies-X.Y.Z.zip from the Liferay distribution.

D.2.3. Unpacking the EAR
Now go to directory $JBOSS_HOME/server/configuration/deploy/ and create a new
directory "liferay-portal.ear". Unpack the content of the distribution file liferay-
portal-X.Y.Z.ear into this directory23.

D.2.4. Fixing the transaction manager configuration
Rename the just unpacked file counter-ejb.jar to tmp.jar. Create a new directory
counter-ejb.jar as subdirectory of $JBOSS_HOME/server/configuration/
deploy/liferay-portal.ear/ and unpack the content of tmp.jar into it. Remove
tmp.jar.

345

http://www.liferay.com
http://www.liferay.com

Edit $JBOSS_HOME/server/configuration/de-
ploy/
liferay-
portal.ear/counter-ejb.jar/META-INF/counter-spring-enterprise.xml.
Replace the bean definition

<bean id="liferayTransactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager"
lazy-init="true">
<property name="dataSource">
<ref bean="liferayDataSource" />

</property>
<property name="sessionFactory">
<ref bean="liferaySessionFactory" />

</property>
</bean>

with

<bean id="liferayTransactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager"
lazy-init="true"/>

D.2.5. Adapting the portal configuration
Rename the file portal-ejb.jar previously unpacked into $JBOSS_HOME/server/con-
figuration/deploy/liferay-portal.ear/ to tmp.jar. Create a new directory
portal-ejb.jar as subdirectory of $JBOSS_HOME/server/configuration/
deploy/liferay-portal.ear/ and unpack the content of tmp.jar into it. Remove
tmp.jar.

Create a new file $JBOSS_HOME/server/configuration/de-
ploy/liferay-portal.ear/portal-ejb.jar/portal-ext.properties with the
following content:

portal.release=enterprise
portal.ctx=/
auto.deploy.dest.dir=../server/configuration/deploy
auto.deploy.deploy.dir=../server/configuration/liferay-deploy
lucene.dir=../server/configuration/data/lucene
jcr.jackrabbit.repository.root=../server/configuration/data/jackrabbit

portal.configuration=false
portal.jaas.enable=true

Note that the relative paths used assume that JBoss will be started with $JBOSS_HOME/bin as
working directory.

D.2.6. Configure security
With the configuration above, Liferay uses the standard JBoss mechanism for configuring security
(instead of doing it programatically). Open $JBOSS_HOME/server/configuration/
conf/login-config.xml in an editor and at its end, but before the final </policy> insert

<!-- Security configuration for Liferay -->
<application-policy name="PortalRealm">
<authentication>
<login-module code="com.liferay.portal.kernel.security.jaas.PortalLoginModule" flag="required"/>

</authentication>
</application-policy>

Adapting the portal configuration

346

D.3. Providing a database
Liferay can be used with many databases. This section covers only using Liferay with embedded
Hypersonic SQL. This is the easiest route because you do not have to install an RDBMS.

First create a datasource configuration in $JBOSS_HOME/server/configuration/deploy.
We suggest to create a deployment descriptor liferay-ds.xml with the content:

<?xml version="1.0"?>

<datasources>
<local-tx-datasource>
<jndi-name>jdbc/LiferayPool</jndi-name>
<connection-url>jdbc:hsqldb:${jboss.server.data.dir}${/}hypersonic${/}liferayDB</connection-url>
<driver-class>org.hsqldb.jdbcDriver</driver-class>
<user-name>sa</user-name>
<password></password>
<min-pool-size>5</min-pool-size>
</local-tx-datasource>

</datasources>

Create a directory "sql/" and unpack liferay-portal-sql-X.Y.Z.zip from the liferay
distribution into it. Change your working directory to sql/.

Now create a new Hypersonic DB with this command:

java -cp "$JBOSS_HOME/server/configuration/deploy/liferay-portal.ear/portal-ejb.jar:\
$JBOSS_HOME/server/configuration/deploy/liferay-portal.ear/lib/util-java.jar:\
$JBOSS_HOME/server/configuration/lib/hsqldb.jar" \
com.liferay.portal.tools.DBLoader \
hypersonic $JBOSS_HOME/server/configuration/data/hypersonic/liferayDB

Note that on Windows, you'll have to replace the column (":") used as path separator above with the
semicolon (";").

D.4. Starting JBoss
Change the working directory to $JBOSS_HOME/bin/. Run run.bat with options "-c
liferay".

Starting JBoss

347

348

Appendix E. Notes
• This product includes software developed by the Apache Software Foundation

(http://www.apache.org/).

349

350

Appendix F. GNU General Public
License

Version 2, June 1991
Copyright © 2000 Free Software Foundation, Inc.

Free Software Foundation, Inc.
59 Temple Place, Suite 330,
Boston,
MA 02111-1307
USA

.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

F.1. Preamble
The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software - to make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Li-
censes are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the soft-
ware.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems intro-
duced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

351

The precise terms and conditions for copying, distribution and modification follow.

F.2. TERMS AND CONDITIONS FOR COPY-
ING, DISTRIBUTION AND MODIFICATION
F.2.1. Section 0

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

F.2.2. Section 1
You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

F.2.3. Section 2
You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is de-
rived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License.

Exception:

If the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in

TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODI-

352

themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose per-
missions for other licensees extend to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the oth-
er work under the scope of this License.

F.2.4. Section 3
You may copy and distribute the Program (or a work based on it, under Section 2 in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the fol-
lowing:

a. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you re-
ceived the program in object code or executable form with such an offer, in accord with Subsec-
tion b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and install-
ation of the executable. However, as a special exception, the source code distributed need not in-
clude anything that is normally distributed (in either source or binary form) with the major compon-
ents (compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as distri-
bution of the source code, even though third parties are not compelled to copy the source along with
the object code.

F.2.5. Section 4
You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

F.2.6. Section 5
You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are

Section 3

353

prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Pro-
gram (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.

F.2.7. Section 6
Each time you redistribute the Program (or any work based on the Program), the recipient automat-
ically receives a license from the original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further restrictions on the recipients' exer-
cise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

F.2.8. Section 7
If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Pro-
gram at all. For example, if a patent license would not permit royalty-free redistribution of the Pro-
gram by all those who receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

F.2.9. Section 8
If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

F.2.10. Section 9
The Free Software Foundation may publish revised and/or new versions of the General Public Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

FICATION

354

F.2.11. Section 10
If you wish to incorporate parts of the Program into other free programs whose distribution condi-
tions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make excep-
tions for this. Our decision will be guided by the two goals of preserving the free status of all deriv-
atives of our free software and of promoting the sharing and reuse of software generally.

F.2.12. NO WARRANTY
Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

F.2.13. Section 12
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

NO WARRANTY

355

356

Index
Symbols
$DIST , 2

A
abandon, 146
abandonActivity, 266, 266
ABANDONED, 153
abort, 112
ABORTED, 121
activitiesInState, 132
activity, 101
Activity, 145
ACTIVITY_ASSIGNMENT_CHANGED, 105
ACTIVITY_CONTEXT_CHANGED, 105
ACTIVITY_RESULT_CHANGED, 105
ACTIVITY_STATE_CHANGED, 105
Activity.ClosedCompletedState, 152, 153
Activity.DeadlineInfo, 155, 156
Activity.Implementation, 157
Activity.Info, 158, 158
Activity.JoinAndSplitMode, 160, 161
Activity.StartFinishMode, 163, 163
Activity.SubFlowImplementation, 164
Activity.ToolImplementation, 166
activityByKey, 208
ActivityFinder, 269
activityInfo, 146
activityKey, 106, 168
activityName, 106
ActivityUniqueKey, 166, 167, 167
activityUniqueKey, 322
addInvocation, 194, 194
AlreadyAssignedException, 169, 170, 170
AlreadyRunningException, 83, 83
AlreadySuspendedException, 83, 84
AND, 161
Application, 170
applicationById, 213
applicationDirectory, 300
applicationId, 267
ApplicationNotStoppedException, 255, 255
applications, 213
asResource, 242, 272, 291
assignedAt, 322
assignee, 102
assignments, 99, 273
ASYNCHR, 156, 164, 260
AUDIT_SELECTION_ALL_EVENTS, 212
AUDIT_SELECTION_NO_EVENTS, 212
AUDIT_SELECTION_PROCESS_CLOSED_EVEN
TS_ONLY, 212
AUDIT_SELECTION_STATE_EVENTS_ONLY,
212
auditEventSelection, 213
author, 221
authorizers, 242, 274, 292, 332
autoAssignResources, 274

AUTOMATIC, 163

B
Batch, 171
Batch.Context, 171
blockActivity, 147

C
caller, 243
CannotChangeRequesterException, 84
CannotCompleteException, 84, 85
CannotExecuteException, 256, 256, 256
CannotRemoveException, 172, 172
CannotResumeException, 85, 85
CannotStartException, 86, 86
CannotStopException, 86, 87
CannotSuspendException, 87, 87
category, 136
changeAssignment, 147, 275
changeState, 113, 183
Channel, 172
choose, 148
Classes

Activity.ClosedCompletedState, 152
Activity.DeadlineInfo, 155
Activity.Info, 158
Activity.JoinAndSplitMode, 160
Activity.StartFinishMode, 163
ActivityUniqueKey, 166
DatabaseRmsFactory, 329
DefaultGroupResource, 282
DefaultProcessData, 176
DefaultRequester, 177
DefaultResource, 283
DefaultRoleResource, 286
DefaultUserResource, 288
EisRmsFactory, 331
ExceptionMappingProvider.ExceptionMapping,
258
FormalParameter, 186
FormalParameter.Mode, 188
MethodInvocationBatch, 193
MethodInvocationBatch.Result, 195
Participant.ParticipantType, 199
PrioritizedMessage, 203
PrioritizedMessage.Priority, 206
ResourceAssignmentServiceFactory, 279
ResourceManagementServiceFactory, 294
ResultProvider.ExceptionResult, 262
RmsEntry, 334
SimpleApplicationAgent, 299
SimpleApplicationDirectoryEJB, 306
SimpleApplicationDirectoryLookup, 320
SimpleApplicationInfo, 321
StandardResourceAssignmentServiceFactory, 327
StandardWorkflowServiceFactory, 325
WfExecutionObject.ClosedState, 120
WfExecutionObject.NotRunningState, 123
WfExecutionObject.OpenState, 125
WfExecutionObject.State, 128
WorkflowServiceFactory, 250

cleanupMode, 214

357

close, 333
CLOSED, 129
codepage, 221
compareTo, 207
complete, 99
COMPLETED, 121
COND_TYPE_CONDITION, 238
COND_TYPE_DEFAULTEXCEPTION, 238
COND_TYPE_EXCEPTION, 238
COND_TYPE_OTHERWISE, 238
condition, 238
conditionType, 239
Configuration, 175
configuration, 243
container, 99
ContextRequester, 257
contextSignature, 136, 214
costUnit, 219
countrykey, 222
created, 219, 222
createEventSubscriber, 243, 244
createProcess, 137
createTime, 209

D
DatabaseRmsFactory, 329, 330
deadline

and loops, 41
and suspended state, 19
definition, 34
exception from, 18

DeadlineCondition, 34
deadlines, 148
DEBUG, 207
debugEnabled, 183
DefaultGroupResource, 282, 282
DefaultProcessData, 176, 176, 176
DefaultRequester, 177, 178, 178, 178
DefaultResource, 283, 284
DefaultRoleResource, 286, 287
DefaultUserResource, 288, 288
description, 113, 137, 159, 166, 170, 219, 222
DirectInvocable, 299
DISABLED, 136
documentation, 219
doFinish, 244

E
EisRmsFactory, 331, 331
ejbActivate, 308
ejbCreate, 309
ejbPassivate, 309
ejbRemove, 309
emit, 237
ENABLED, 136
equals, 168, 179, 187, 328
ERROR, 207
Errors

FactoryConfigurationError, 185, 270, 289
eventReceiver, 245
EventSubscriber, 180
eventType, 106

ExceptionMappingProvider, 257
ExceptionMappingProvider.ExceptionMapping, 258,
258, 259, 259
exceptionMappings, 258
exceptionName, 263
Exceptions, 18, 31, 36

AlreadyAssignedException, 169
AlreadyRunningException, 83
AlreadySuspendedException, 83
ApplicationNotStoppedException, 255
CannotChangeRequesterException, 84
CannotCompleteException, 84
CannotExecuteException, 256
CannotRemoveException, 172
CannotResumeException, 85
CannotStartException, 86
CannotStopException, 86
CannotSuspendException, 87
HistoryNotAvailableException, 87
ImportException, 190
InvalidControlOperationException, 88
InvalidDataException, 89
InvalidIdException, 191
InvalidKeyException, 192
InvalidPerformerException, 89
InvalidPriorityException, 90
InvalidRequesterException, 90
InvalidResourceException, 91
InvalidStateException, 91
NoSuchActivityException, 270
NoSuchResourceException, 198
NotAssignedException, 92
NotEnabledException, 92
NotRunningException, 93
NotSuspendedException, 94
Overriding default behaviour, 32
RequesterRequiredException, 95
ResourceNotFoundException, 297
ResultNotAvailableException, 95
SourceNotAvailableException, 96
TransitionNotAllowedException, 96
UpdateNotAllowedException, 98

execute, 171, 194, 321
executeBatch, 245
execution, 165
executionMode, 261
ExecutionModeProvider, 260
ExecutionObject, 182
executor, 149
ExternalReference, 184

F
FactoryConfigurationError, 185, 185, 185, 186, 270,
270, 270, 289, 289, 289
FATAL, 207
Fields

ABANDONED, 153
ABORTED, 121
ACTIVITY_ASSIGNMENT_CHANGED, 105
ACTIVITY_CONTEXT_CHANGED, 105
ACTIVITY_RESULT_CHANGED, 105
ACTIVITY_STATE_CHANGED, 105

358

AND, 161
ASYNCHR, 156, 164, 260
AUDIT_SELECTION_ALL_EVENTS, 212
AUDIT_SELECTION_NO_EVENTS, 212
AUDIT_SELECTION_PROCESS_CLOSED_EVE
NTS_ONLY, 212
AUDIT_SELECTION_STATE_EVENTS_ONLY,
212
AUTOMATIC, 163
CLOSED, 129
COMPLETED, 121
COND_TYPE_CONDITION, 238
COND_TYPE_DEFAULTEXCEPTION, 238
COND_TYPE_EXCEPTION, 238
COND_TYPE_OTHERWISE, 238
DEBUG, 207
DISABLED, 136
ENABLED, 136
ERROR, 207
FATAL, 207
HUMAN, 200
IN, 189
INFO, 207
INOUT, 189
MANUAL, 163
NORMAL, 153
NOT_RUNNING, 126
NOT_STARTED, 124
OPEN, 129
ORGANIZATIONAL_UNIT, 200
OUT, 189
PROCESS_CONTEXT_CHANGED, 105
PROCESS_CREATED, 105
PROCESS_STATE_CHANGED, 106
REMOVE_AUTOMATIC, 212
REMOVE_COMPLETED, 213
REMOVE_MANUAL, 213
RESOURCE, 201
RESOURCE_SET, 201
ROLE, 201
RUNNING, 126
STATE_ACTIVE, 156
STATE_CANCELED, 156
STATE_INITIAL, 156
STATE_REACHED, 156
SUSPENDED, 124
SYNCHR, 156, 165, 261
SYSTEM, 201
TERMINATED, 121
WARN, 207
XML_AS_JDOM, 268
XML_AS_SAX, 268
XML_AS_W3C_DOM, 268
XOR, 161

find, 269
findByDataItem, 234
finishActivity, 267
firstException, 196
FormalParameter, 186, 187
FormalParameter.Mode, 188
formalParameters, 214
from, 239
fromString, 129, 162, 164, 189, 201

G
getChannel, 246, 246
getCondition, 157
getDisplayName, 335
getExceptionName, 157
getExecutionMode, 157
getId, 199, 283, 283, 287, 287, 288, 289
getJavaException, 259
getKey, 335
getName, 199
getParent, 122, 124, 126, 129, 154
getParticipantType, 199
getProcessException, 260
getProperties, 251
getResource, 149, 276
getResourceAssignmentContext, 294
getResourceAssignmentService, 295
getResourceSelection, 199
getState, 157
getSuspendActivity, 260
getType, 336
group, 239
GroupResource, 190

H
handledExceptions, 149
hasExceptions, 196
hashCode, 168, 179, 187, 328
history, 113
HistoryNotAvailableException, 87
howClosed, 114
howClosedState, 122, 124, 127, 130, 154
HUMAN, 200

I
id, 166, 170, 187, 239, 322
implementation, 150
ImportException, 190, 191
importProcessDefinitions, 226, 226
IN, 189
index, 188
INFO, 207
infoByActivity, 302, 309, 316
infosByApplication, 302, 310, 316
infosByKey, 303, 310, 316
infosByResource, 303, 310, 317
INOUT, 189
instanceInfo, 303, 311, 317
Interfaces

Activity, 145
Activity.Implementation, 157
Activity.SubFlowImplementation, 164
Activity.ToolImplementation, 166
ActivityFinder, 269
Application, 170
Batch, 171
Batch.Context, 171
Channel, 172
Configuration, 175
ContextRequester, 257

359

DirectInvocable, 299
EventSubscriber, 180
ExceptionMappingProvider, 257
ExecutionModeProvider, 260
ExecutionObject, 182
ExternalReference, 184
GroupResource, 190
Participant, 198
Process, 208
ProcessClosedAuditEvent, 210
ProcessData, 94
ProcessDataInfo, 94
ProcessDefinition, 211
ProcessDefinition.PackageHeaderData, 218
ProcessDefinition.ProcessHeaderData, 220
ProcessDefinitionDirectory, 225
ProcessDirectory, 230
ProcessMgr, 233
RangeAccess, 235
ResourceAssignmentContext, 290
ResourceAssignmentService, 271
ResourceManagementService, 291
ResultProvider, 261
RmsConnection, 332
RmsConnectionFactory, 334
RoleResource, 236
SAXEventBuffer, 236
SimpleApplicationDirectory, 301
SimpleApplicationDirectoryHome, 314
SimpleApplicationDirectoryLocal, 315
SimpleApplicationDirectoryLocalHome, 320
ToolAgent, 263
ToolAgentContext, 265
Transition, 237
UserResource, 240
WfActivity, 98
WfAssignment, 101
WfAssignmentAuditEvent, 103
WfAuditEvent, 104
WfAuditHandler, 108
WfCreateProcessAuditEvent, 108
WfDataAuditEvent, 110
WfExecutionObject, 111
WfObject, 131
WfProcess, 132
WfProcessMgr, 135
WfRequester, 140
WfResource, 141
WfStateAuditEvent, 143
WorkflowService, 240
XMLArgumentTypeProvider, 268

InvalidControlOperationException, 88, 88
InvalidDataException, 89, 89
InvalidIdException, 191, 192
InvalidKeyException, 192, 192
InvalidPerformerException, 89
InvalidPriorityException, 90, 90
InvalidRequesterException, 90
InvalidResourceException, 91
InvalidStateException, 91, 92, 92
invoke, 264
isAND, 162
isEnabled, 227

isHuman, 201
isMemberOfAssignments, 100
isMemberOfPerformers, 140, 179
isMemberOfWorkItems, 141, 276, 284, 290
isOrganizationUnit, 202
isResource, 202
isResourceSet, 202
isRole, 202
isRollbackOnly, 172
isSameOrSubState, 130
isSystem, 202
isValidKey, 283, 287, 289
isXOR, 162
itemCount, 235
items, 236

J
joinMode, 150

K
key, 114
knownResources, 247, 277

L
lastStateTime, 114, 159
limit, 222
listResources, 292, 333
location, 184
lookupActivity, 230, 267
lookupActivityInfo, 231
lookupProcess, 231
lookupProcessDefinition, 227
lookupResource, 333
lookupUserByAccountName, 333

M
manager, 133
managerName, 169
MANUAL, 163
message, 204, 205
messages, 191
MethodInvocationBatch, 193, 193, 193
MethodInvocationBatch.Result, 195, 195
Methods

abandon, 146
abandonActivity, 266, 266
abort, 112
activitiesInState, 132
activity, 101
Activity.ClosedCompletedState, 153
Activity.DeadlineInfo, 156
Activity.Info, 158
Activity.JoinAndSplitMode, 161
Activity.StartFinishMode, 163
activityByKey, 208
activityInfo, 146
activityKey, 106, 168
activityName, 106
ActivityUniqueKey, 167, 167
activityUniqueKey, 322
addInvocation, 194, 194

360

AlreadyAssignedException, 170, 170
AlreadyRunningException, 83
AlreadySuspendedException, 84
applicationById, 213
applicationDirectory, 300
applicationId, 267
ApplicationNotStoppedException, 255
applications, 213
asResource, 242, 272, 291
assignedAt, 322
assignee, 102
assignments, 99, 273
auditEventSelection, 213
author, 221
authorizers, 242, 274, 292, 332
autoAssignResources, 274
blockActivity, 147
caller, 243
CannotCompleteException, 85
CannotExecuteException, 256, 256
CannotRemoveException, 172
CannotResumeException, 85
CannotStartException, 86
CannotStopException, 87
CannotSuspendException, 87
category, 136
changeAssignment, 147, 275
changeState, 113, 183
choose, 148
cleanupMode, 214
close, 333
codepage, 221
compareTo, 207
complete, 99
condition, 238
conditionType, 239
configuration, 243
container, 99
contextSignature, 136, 214
costUnit, 219
countrykey, 222
created, 219, 222
createEventSubscriber, 243, 244
createProcess, 137
createTime, 209
DatabaseRmsFactory, 330
deadlines, 148
debugEnabled, 183
DefaultGroupResource, 282
DefaultProcessData, 176, 176
DefaultRequester, 178, 178, 178
DefaultResource, 284
DefaultRoleResource, 287
DefaultUserResource, 288
description, 113, 137, 159, 166, 170, 219, 222
documentation, 219
doFinish, 244
EisRmsFactory, 331
ejbActivate, 308
ejbCreate, 309
ejbPassivate, 309
ejbRemove, 309
emit, 237

equals, 168, 179, 187, 328
eventReceiver, 245
eventType, 106
ExceptionMappingProvider.ExceptionMapping,
258, 259, 259
exceptionMappings, 258
exceptionName, 263
execute, 171, 194, 321
executeBatch, 245
execution, 165
executionMode, 261
executor, 149
FactoryConfigurationError, 185, 185, 186, 270,
270, 289, 289
find, 269
findByDataItem, 234
finishActivity, 267
firstException, 196
FormalParameter, 187
formalParameters, 214
from, 239
fromString, 129, 162, 164, 189, 201
getChannel, 246, 246
getCondition, 157
getDisplayName, 335
getExceptionName, 157
getExecutionMode, 157
getId, 199, 283, 283, 287, 287, 288, 289
getJavaException, 259
getKey, 335
getName, 199
getParent, 122, 124, 126, 129, 154
getParticipantType, 199
getProcessException, 260
getProperties, 251
getResource, 149, 276
getResourceAssignmentContext, 294
getResourceAssignmentService, 295
getResourceSelection, 199
getState, 157
getSuspendActivity, 260
getType, 336
group, 239
handledExceptions, 149
hasExceptions, 196
hashCode, 168, 179, 187, 328
history, 113
howClosed, 114
howClosedState, 122, 124, 127, 130, 154
id, 166, 170, 187, 239, 322
implementation, 150
ImportException, 191
importProcessDefinitions, 226, 226
index, 188
infoByActivity, 302, 309, 316
infosByApplication, 302, 310, 316
infosByKey, 303, 310, 316
infosByResource, 303, 310, 317
instanceInfo, 303, 311, 317
InvalidControlOperationException, 88
InvalidDataException, 89
InvalidIdException, 192
InvalidKeyException, 192

361

InvalidPriorityException, 90
InvalidStateException, 92, 92
invoke, 264
isAND, 162
isEnabled, 227
isHuman, 201
isMemberOfAssignments, 100
isMemberOfPerformers, 140, 179
isMemberOfWorkItems, 141, 276, 284, 290
isOrganizationUnit, 202
isResource, 202
isResourceSet, 202
isRole, 202
isRollbackOnly, 172
isSameOrSubState, 130
isSystem, 202
isValidKey, 283, 287, 289
isXOR, 162
itemCount, 235
items, 236
joinMode, 150
key, 114
knownResources, 247, 277
lastStateTime, 114, 159
limit, 222
listResources, 292, 333
location, 184
lookupActivity, 230, 267
lookupActivityInfo, 231
lookupProcess, 231
lookupProcessDefinition, 227
lookupResource, 333
lookupUserByAccountName, 333
manager, 133
managerName, 169
message, 204, 205
messages, 191
MethodInvocationBatch, 193, 193
MethodInvocationBatch.Result, 195
mgrName, 214
mode, 188
name, 115, 137, 159, 173
namespace, 184
newData, 110
newInstance, 251, 280, 295
newResourceAssignmentService, 281
newResourceKey, 103
newResourceManagementService, 296
newResourceName, 103
newState, 144
newWorkflowService, 252
nextActivities, 150
NoSuchActivityException, 271
NoSuchResourceException, 198
NotEnabledException, 93
NotRunningException, 93
NotSuspendedException, 94
oldData, 110
oldResourceKey, 103
oldResourceName, 104
oldState, 144
order, 239
packageHeader, 223

packageId, 165, 215
packageName, 215
pActivityKey, 109
participantById, 215
participants, 215
performer, 151
performers, 141, 180
pProcessKey, 109
pProcessMgrName, 109
pProcessMgrVersion, 110
pProcessName, 110
PrioritizedMessage, 204, 204
PrioritizedMessage.Priority, 206
priority, 115, 160, 205, 223
priorityUnit, 220
process, 173
processByKey, 235
processContext, 115
processDefinition, 209
processDefinitionDirectory, 247
processDefinitionExists, 227
processDefinitions, 228
processDescription, 160
processDirectory, 248
processes, 138, 232, 232
processHeader, 216
processId, 165, 216
processKey, 106, 165, 169
processMgr, 228
processMgrName, 107
processMgrNames, 232
processMgrState, 138
processMgrVersion, 107
processName, 107, 160, 216
processNames, 233
publicationStatus, 223
receive, 181, 181
receiveEvent, 108
receiveMessage, 174, 174
receiveNoWait, 182
registerInstance, 304, 304, 311, 312, 317, 318
registerRequester, 248
registerState, 130
release, 142, 248, 285
removeAssignment, 151, 277
removeClosedProcess, 216
removeInstance, 305, 312, 318
removeProcess, 233
removeProcessDefinition, 229
requestedBy, 249
requestedXMLArgumentType, 268
requester, 133
ResourceAssignmentServiceFactory, 280
resourceByKey, 249, 278, 293
resourceKey, 142, 285, 322
ResourceManagementServiceFactory, 294
resourceName, 143, 286
ResourceNotFoundException, 298, 298
responsibles, 223
result, 100, 133, 196, 210, 261
resultAsDate, 197
resultAsInt, 197
resultAsString, 197

362

ResultProvider.ExceptionResult, 262, 262
results, 197
resultSignature, 139, 217
resume, 116
RmsEntry, 335
selectResources, 293, 333
sendMessage, 174
serviceProperties, 250
setAssignee, 102
setDebugEnabled, 209
setDescription, 116
setEnabled, 229
setEventHandler, 182
setName, 116
setPriority, 117
setProcessContext, 117
setProcessMgrState, 139
setProperties, 253
setProperty, 253
setRequester, 134
setResourceAssignmentContext, 296
setResourceAssignmentService, 297
setResult, 101
setSessionContext, 312
setToolAgentContext, 257
SimpleApplicationAgent, 300
SimpleApplicationDirectoryEJB, 308
source, 107
splitMode, 152
StandardResourceAssignmentServiceFactory, 328
StandardWorkflowServiceFactory, 326
start, 134
state, 118, 322
steps, 134
storeAuditEvents, 217
suspend, 118
suspendActivity, 263
terminate, 118, 265, 300
textRepresentation, 130
timeEstimationDuration, 223
timeEstimationWaiting, 224
timeEstimationWorking, 224
timeStamp, 108
to, 240
toJDOM, 217
toSAX, 217
toString, 131, 162, 164, 169, 176, 180, 188, 190,
203, 205, 207
toXPDL, 218
TransitionNotAllowedException, 97, 97, 97
transitions, 210
type, 188
typedState, 183
uniqueKey, 152, 160
unmappedMessage, 205
updateInvokingActivity, 305, 313, 318
UpdateNotAllowedException, 98
updateResourceKey, 305, 313, 319
updateState, 306, 314, 319
validFrom, 224
validStates, 119
validTo, 224
vendor, 220

version, 139, 218, 224
WfExecutionObject.ClosedState, 121
WfExecutionObject.NotRunningState, 124
WfExecutionObject.OpenState, 126
WfExecutionObject.State, 129
whileOpen, 119
whileOpenState, 122, 125, 127, 131, 154
whyNotRunning, 119
whyNotRunningState, 122, 125, 127, 131, 154
workflowEngineInstanceKey, 175
WorkflowServiceFactory, 251
workflowState, 120, 122, 125, 127, 131, 154
workItems, 143, 279, 286, 290
xpdlVersion, 220
xref, 185

mgrName, 214
mode, 188

N
name, 115, 137, 159, 173
namespace, 184
newData, 110
newInstance, 251, 280, 295
newResourceAssignmentService, 281
newResourceKey, 103
newResourceManagementService, 296
newResourceName, 103
newState, 144
newWorkflowService, 252
nextActivities, 150
NORMAL, 153
NoSuchActivityException, 270, 271
NoSuchResourceException, 198, 198
NOT_RUNNING, 126
NOT_STARTED, 124
NotAssignedException, 92
NotEnabledException, 92, 93
NotRunningException, 93, 93
NotSuspendedException, 94, 94

O
oldData, 110
oldResourceKey, 103
oldResourceName, 104
oldState, 144
OPEN, 129
order, 239
ORGANIZATIONAL_UNIT, 200
OUT, 189

P
packageHeader, 223
packageId, 165, 215
packageName, 215
pActivityKey, 109
Participant, 198
Participant.ParticipantType, 199
participantById, 215
participants, 215
performer, 151
performers, 141, 180

363

pProcessKey, 109
pProcessMgrName, 109
pProcessMgrVersion, 110
pProcessName, 110
PrioritizedMessage, 203, 204, 204
PrioritizedMessage.Priority, 206, 206
priority, 115, 160, 205, 223
priorityUnit, 220
process, 173
Process, 208
PROCESS_CONTEXT_CHANGED, 105
PROCESS_CREATED, 105
PROCESS_STATE_CHANGED, 106
processByKey, 235
ProcessClosedAuditEvent, 210
processContext, 115
ProcessData, 94
ProcessDataInfo, 94
processDefinition, 209
ProcessDefinition, 211
ProcessDefinition.PackageHeaderData, 218
ProcessDefinition.ProcessHeaderData, 220
ProcessDefinitionDirectory, 225
processDefinitionDirectory, 247
processDefinitionExists, 227
processDefinitions, 228
processDescription, 160
ProcessDirectory, 230
processDirectory, 248
processes, 138, 232, 232
processHeader, 216
processId, 165, 216
processKey, 106, 165, 169
processMgr, 228
ProcessMgr, 233
processMgrName, 107
processMgrNames, 232
processMgrState, 138
processMgrVersion, 107
processName, 107, 160, 216
processNames, 233
publicationStatus, 223

R
RangeAccess, 235
receive, 181, 181
receiveEvent, 108
receiveMessage, 174, 174
receiveNoWait, 182
registerInstance, 304, 304, 311, 312, 317, 318
registerRequester, 248
registerState, 130
release, 142, 248, 285
REMOVE_AUTOMATIC, 212
REMOVE_COMPLETED, 213
REMOVE_MANUAL, 213
removeAssignment, 151, 277
removeClosedProcess, 216
removeInstance, 305, 312, 318
removeProcess, 233
removeProcessDefinition, 229
requestedBy, 249

requestedXMLArgumentType, 268
requester, 133
RequesterRequiredException, 95
RESOURCE, 201
RESOURCE_SET, 201
ResourceAssignmentContext, 290
ResourceAssignmentService, 271
ResourceAssignmentServiceFactory, 279, 280
resourceByKey, 249, 278, 293
resourceKey, 142, 285, 322
ResourceManagementService, 291
ResourceManagementServiceFactory, 294, 294
resourceName, 143, 286
ResourceNotFoundException, 297, 298, 298
responsibles, 223
result, 100, 133, 196, 210, 261
resultAsDate, 197
resultAsInt, 197
resultAsString, 197
ResultNotAvailableException, 95
ResultProvider, 261
ResultProvider.ExceptionResult, 262, 262, 262
results, 197
resultSignature, 139, 217
resume, 116
RmsConnection, 332
RmsConnectionFactory, 334
RmsEntry, 334, 335
ROLE, 201
RoleResource, 236
RUNNING, 126

S
SAXEventBuffer, 236
selectResources, 293, 333
sendMessage, 174
serviceProperties, 250
setAssignee, 102
setDebugEnabled, 209
setDescription, 116
setEnabled, 229
setEventHandler, 182
setName, 116
setPriority, 117
setProcessContext, 117
setProcessMgrState, 139
setProperties, 253
setProperty, 253
setRequester, 134
setResourceAssignmentContext, 296
setResourceAssignmentService, 297
setResult, 101
setSessionContext, 312
setToolAgentContext, 257
SimpleApplicationAgent, 299, 300
SimpleApplicationDirectory, 301
SimpleApplicationDirectoryEJB, 306, 308
SimpleApplicationDirectoryHome, 314
SimpleApplicationDirectoryLocal, 315
SimpleApplicationDirectoryLocalHome, 320
SimpleApplicationDirectoryLookup, 320
SimpleApplicationInfo, 321

364

source, 107
SourceNotAvailableException, 96
splitMode, 152
StandardResourceAssignmentServiceFactory, 327,
328
StandardWorkflowServiceFactory, 325, 326
start, 134
state, 118, 322
STATE_ACTIVE, 156
STATE_CANCELED, 156
STATE_INITIAL, 156
STATE_REACHED, 156
steps, 134
storeAuditEvents, 217
suspend, 118
suspendActivity, 263
SUSPENDED, 124
SYNCHR, 156, 165, 261
SYSTEM, 201

T
terminate, 118, 265, 300
TERMINATED, 121
textRepresentation, 130
timeEstimationDuration, 223
timeEstimationWaiting, 224
timeEstimationWorking, 224
timeStamp, 108
to, 240
toJDOM, 217
ToolAgent, 263
ToolAgentContext, 265
toSAX, 217
toString, 131, 162, 164, 169, 176, 180, 188, 190, 203,
205, 207
toXPDL, 218
Transition, 237
TransitionNotAllowedException, 96, 97, 97, 97
transitions, 210
type, 188
typedState, 183

U
uniqueKey, 152, 160
unmappedMessage, 205
updateInvokingActivity, 305, 313, 318
UpdateNotAllowedException, 98, 98
updateResourceKey, 305, 313, 319
updateState, 306, 314, 319
UserResource, 240

V
validFrom, 224
validStates, 119
validTo, 224
vendor, 220
version, 139, 218, 224

W
WARN, 207
WfActivity, 98

WfAssignment, 101
WfAssignmentAuditEvent, 103
WfAuditEvent, 104
WfAuditHandler, 108
WfCreateProcessAuditEvent, 108
WfDataAuditEvent, 110
WfExecutionObject, 111
WfExecutionObject.ClosedState, 120, 121
WfExecutionObject.NotRunningState, 123, 124
WfExecutionObject.OpenState, 125, 126
WfExecutionObject.State, 128, 129
WfObject, 131
WfProcess, 132
WfProcessMgr, 135
WfRequester, 140
WfResource, 141
WfStateAuditEvent, 143
whileOpen, 119
whileOpenState, 122, 125, 127, 131, 154
whyNotRunning, 119
whyNotRunningState, 122, 125, 127, 131, 154
workflowEngineInstanceKey, 175
WorkflowService, 240
Workflow service, 26
WorkflowServiceFactory, 26, 250, 251
workflowState, 120, 122, 125, 127, 131, 154
workItems, 143, 279, 286, 290
Writing a client, 26

X
XML_AS_JDOM, 268
XML_AS_SAX, 268
XML_AS_W3C_DOM, 268
XMLArgumentTypeProvider, 268
XOR, 161
xpdlVersion, 220
xref, 185

365

366

	The Danet Workflow Component
	Table of Contents
	Introduction
	Chapter 1. Integrating the workflow component
	1.1. Prerequisites
	1.2. Preparing the database
	1.3. Application and client assembly
	1.3.1. Workflow APIs
	1.3.2. Client JAR
	1.3.3. The Danet AN utility library
	1.3.4. Workflow module
	1.3.4.1. Vendor specific deployment descriptors
	1.3.4.2. Accessing the engine from a client
	1.3.4.3. Queues and Topics
	1.3.4.4. Security roles

	1.3.5. The optional callback module
	1.3.6. The utility module
	1.3.7. Additional libraries

	1.4. Deploying the component
	1.4.1. Preparing the modules
	1.4.1.1. General helpers
	1.4.1.2. Helpers for adapting the workflow engine EJBs
	1.4.1.3. Helpers for adapting the utility EJBs
	1.4.1.4. Sample properties file

	1.4.2. Basic deployment
	1.4.3. Additional services
	1.4.4. Callback module deployment

	Chapter 2. States and state transitions of processes and activities
	2.1. States of processes and activities
	2.2. State transitions of processes and activities
	2.3. Triggers of state transitions
	2.4. Exceptions
	2.5. Suspended state and deadlines
	2.6. Debugging workflows
	2.6.1. Enabling debug mode
	2.6.2. Effect on state changes
	2.6.3. Effect on exceptions
	2.6.4. Effect on deadlines

	Chapter 3. Using the workflow component
	3.1. Component structure
	3.2. Client API
	3.2.1. Adapted OMG interfaces
	3.2.2. Extending the core interface

	3.3. Sample client
	3.3.1. Client code
	3.3.2. Running the sample client

	3.4. Resource assignment SPI
	3.5. Tool invocation SPI
	3.5.1. Invocation mode
	3.5.2. Accessing the workflow engine context
	3.5.3. Accessing JNDI
	3.5.4. Exception handling
	3.5.4.1. Default behaviour
	3.5.4.2. Overriding the default behaviour
	3.5.4.3. Stopping the workflow

	Chapter 4. Process definitions
	4.1. Managing process definitions
	4.2. Process definition format
	4.2.1. Base format
	4.2.2. XPDL and the OMG API
	4.2.3. Specifying XML data
	4.2.4. Deadlines
	4.2.5. Defined extensions
	4.2.5.1. Extentions of Application Declaration
	4.2.5.2. Extensions on Package and Process Level
	4.2.5.3. Extensions on the Activity Level

	4.2.6. Miscellaneous

	4.3. Semantics
	4.3.1. Start and finish of a process
	4.3.2. Split and Join
	4.3.3. Condition evaluation
	4.3.4. Loops
	4.3.5. Deferred choice

	Chapter 5. Tools
	5.1. Overview
	5.2. The XForms Tool
	5.2.1. Usage
	5.2.2. Defining an XForms application in the process definition

	5.3. JavaScript tools
	5.4. Jelly tool
	5.4.1. General usage
	5.4.2. LDAP tag library
	5.4.2.1. <ldap:setInitialContext>
	5.4.2.2. <ldap:query>
	5.4.2.3. <ldap:insert>
	5.4.2.4. <ldap:update>
	5.4.2.5. <ldap:delete>

	5.5. Mail tool
	5.6. XSLT tool
	5.7. Generic SOAP tool
	5.8. RPC SOAP tool
	5.9. Wait tool
	5.10. MBean invocation tool
	5.11. EJB invocation tool
	5.12. Channel based access
	5.12.1. Receiver tool
	5.12.2. Sender tool
	5.12.3. Generic HTTP Access

	Chapter 6. The sample resource assignment service
	6.1. The sample assignment service
	6.2. Provided functionality
	6.3. The underlying resource management service
	6.4. Provided RMS implementations
	6.4.1. Database based RMS
	6.4.2. EIS based RMSes
	6.4.2.1. The generic EIS RMS front-end
	6.4.2.2. Resource adapter implementations
	6.4.2.2.1. Properties based resource adapter
	6.4.2.2.2. The LDAP based resource adapter

	Chapter 7. Wf-XML
	7.1. Installation
	7.2. Accessing Wf-XML Resources
	7.3. Properties
	7.4. Deviations from the Wf-XML 2.0 Standard
	7.4.1. ServiceRegistry
	7.4.2. Factory
	7.4.3. Instance
	7.4.4. Activity

	7.5. Example Client

	Chapter 8. Management portlets
	8.1. Process definition portlet
	8.2. Process definition upload portlet
	8.3. Process portlet
	8.4. Deploying the portlet application in a portal
	8.4.1. General procedure
	8.4.2. Deploying in Jetspeed2

	Chapter 9. Known bugs and limitations
	9.1. Bugs
	9.2. Limitations

	Appendix A. The API documentation
	A.1. Package de.danet.an.workflow.omgcore
	A.1.1. Additional Information
	A.1.2. Exception AlreadyRunningException
	A.1.2.1. Synopsis
	A.1.2.2. AlreadyRunningException(String)

	A.1.3. Exception AlreadySuspendedException
	A.1.3.1. Synopsis
	A.1.3.2. AlreadySuspendedException(String)

	A.1.4. Exception CannotChangeRequesterException
	A.1.4.1. Synopsis

	A.1.5. Exception CannotCompleteException
	A.1.5.1. Synopsis
	A.1.5.2. CannotCompleteException(String)

	A.1.6. Exception CannotResumeException
	A.1.6.1. Synopsis
	A.1.6.2. CannotResumeException(String)

	A.1.7. Exception CannotStartException
	A.1.7.1. Synopsis
	A.1.7.2. CannotStartException(String)

	A.1.8. Exception CannotStopException
	A.1.8.1. Synopsis
	A.1.8.2. CannotStopException(String)

	A.1.9. Exception CannotSuspendException
	A.1.9.1. Synopsis
	A.1.9.2. CannotSuspendException(String)

	A.1.10. Exception HistoryNotAvailableException
	A.1.10.1. Synopsis

	A.1.11. Exception InvalidControlOperationException
	A.1.11.1. Synopsis
	A.1.11.2. InvalidControlOperationException(String)

	A.1.12. Exception InvalidDataException
	A.1.12.1. Synopsis
	A.1.12.2. InvalidDataException(String)

	A.1.13. Exception InvalidPerformerException
	A.1.13.1. Synopsis

	A.1.14. Exception InvalidPriorityException
	A.1.14.1. Synopsis
	A.1.14.2. InvalidPriorityException(String)

	A.1.15. Exception InvalidRequesterException
	A.1.15.1. Synopsis

	A.1.16. Exception InvalidResourceException
	A.1.16.1. Synopsis

	A.1.17. Exception InvalidStateException
	A.1.17.1. Synopsis
	A.1.17.2. InvalidStateException()
	A.1.17.3. InvalidStateException(String)

	A.1.18. Exception NotAssignedException
	A.1.18.1. Synopsis

	A.1.19. Exception NotEnabledException
	A.1.19.1. Synopsis
	A.1.19.2. NotEnabledException(String)

	A.1.20. Exception NotRunningException
	A.1.20.1. Synopsis
	A.1.20.2. NotRunningException(String)

	A.1.21. Exception NotSuspendedException
	A.1.21.1. Synopsis
	A.1.21.2. NotSuspendedException(String)

	A.1.22. Interface ProcessData
	A.1.22.1. Synopsis

	A.1.23. Interface ProcessDataInfo
	A.1.23.1. Synopsis

	A.1.24. Exception RequesterRequiredException
	A.1.24.1. Synopsis

	A.1.25. Exception ResultNotAvailableException
	A.1.25.1. Synopsis

	A.1.26. Exception SourceNotAvailableException
	A.1.26.1. Synopsis

	A.1.27. Exception TransitionNotAllowedException
	A.1.27.1. Synopsis
	A.1.27.2. TransitionNotAllowedException(String)
	A.1.27.3. TransitionNotAllowedException(WfExecutionObject.State, WfExecutionObject.State)
	A.1.27.4. TransitionNotAllowedException(WfExecutionObject.State, WfExecutionObject.State, String)

	A.1.28. Exception UpdateNotAllowedException
	A.1.28.1. Synopsis
	A.1.28.2. UpdateNotAllowedException(String)

	A.1.29. Interface WfActivity
	A.1.29.1. Synopsis
	A.1.29.2. assignments()
	A.1.29.3. complete()
	A.1.29.4. container()
	A.1.29.5. isMemberOfAssignments(WfAssignment)
	A.1.29.6. result()
	A.1.29.7. setResult(ProcessData)

	A.1.30. Interface WfAssignment
	A.1.30.1. Synopsis
	A.1.30.2. activity()
	A.1.30.3. assignee()
	A.1.30.4. setAssignee(WfResource)

	A.1.31. Interface WfAssignmentAuditEvent
	A.1.31.1. Synopsis
	A.1.31.2. newResourceKey()
	A.1.31.3. newResourceName()
	A.1.31.4. oldResourceKey()
	A.1.31.5. oldResourceName()

	A.1.32. Interface WfAuditEvent
	A.1.32.1. Synopsis
	A.1.32.2. ACTIVITY_ASSIGNMENT_CHANGED
	A.1.32.3. ACTIVITY_CONTEXT_CHANGED
	A.1.32.4. ACTIVITY_RESULT_CHANGED
	A.1.32.5. ACTIVITY_STATE_CHANGED
	A.1.32.6. PROCESS_CONTEXT_CHANGED
	A.1.32.7. PROCESS_CREATED
	A.1.32.8. PROCESS_STATE_CHANGED
	A.1.32.9. activityKey()
	A.1.32.10. activityName()
	A.1.32.11. eventType()
	A.1.32.12. processKey()
	A.1.32.13. processMgrName()
	A.1.32.14. processMgrVersion()
	A.1.32.15. processName()
	A.1.32.16. source()
	A.1.32.17. timeStamp()

	A.1.33. Interface WfAuditHandler
	A.1.33.1. Synopsis
	A.1.33.2. receiveEvent(WfAuditEvent)

	A.1.34. Interface WfCreateProcessAuditEvent
	A.1.34.1. Synopsis
	A.1.34.2. pActivityKey()
	A.1.34.3. pProcessKey()
	A.1.34.4. pProcessMgrName()
	A.1.34.5. pProcessMgrVersion()
	A.1.34.6. pProcessName()

	A.1.35. Interface WfDataAuditEvent
	A.1.35.1. Synopsis
	A.1.35.2. newData()
	A.1.35.3. oldData()

	A.1.36. Interface WfExecutionObject
	A.1.36.1. Synopsis
	A.1.36.2. abort()
	A.1.36.3. changeState(String)
	A.1.36.4. description()
	A.1.36.5. history()
	A.1.36.6. howClosed()
	A.1.36.7. key()
	A.1.36.8. lastStateTime()
	A.1.36.9. name()
	A.1.36.10. priority()
	A.1.36.11. processContext()
	A.1.36.12. resume()
	A.1.36.13. setDescription(String)
	A.1.36.14. setName(String)
	A.1.36.15. setPriority(int)
	A.1.36.16. setProcessContext(ProcessData)
	A.1.36.17. state()
	A.1.36.18. suspend()
	A.1.36.19. terminate()
	A.1.36.20. validStates()
	A.1.36.21. whileOpen()
	A.1.36.22. whyNotRunning()
	A.1.36.23. workflowState()

	A.1.37. Class WfExecutionObject.ClosedState
	A.1.37.1. Synopsis
	A.1.37.2. WfExecutionObject.ClosedState(String)
	A.1.37.3. ABORTED
	A.1.37.4. COMPLETED
	A.1.37.5. TERMINATED
	A.1.37.6. getParent()
	A.1.37.7. howClosedState()
	A.1.37.8. whileOpenState()
	A.1.37.9. whyNotRunningState()
	A.1.37.10. workflowState()

	A.1.38. Class WfExecutionObject.NotRunningState
	A.1.38.1. Synopsis
	A.1.38.2. WfExecutionObject.NotRunningState(String)
	A.1.38.3. NOT_STARTED
	A.1.38.4. SUSPENDED
	A.1.38.5. getParent()
	A.1.38.6. howClosedState()
	A.1.38.7. whileOpenState()
	A.1.38.8. whyNotRunningState()
	A.1.38.9. workflowState()

	A.1.39. Class WfExecutionObject.OpenState
	A.1.39.1. Synopsis
	A.1.39.2. WfExecutionObject.OpenState(String)
	A.1.39.3. NOT_RUNNING
	A.1.39.4. RUNNING
	A.1.39.5. getParent()
	A.1.39.6. howClosedState()
	A.1.39.7. whileOpenState()
	A.1.39.8. whyNotRunningState()
	A.1.39.9. workflowState()

	A.1.40. Class WfExecutionObject.State
	A.1.40.1. Synopsis
	A.1.40.2. WfExecutionObject.State(String)
	A.1.40.3. CLOSED
	A.1.40.4. OPEN
	A.1.40.5. fromString(String)
	A.1.40.6. getParent()
	A.1.40.7. howClosedState()
	A.1.40.8. isSameOrSubState(WfExecutionObject.State)
	A.1.40.9. registerState(WfExecutionObject.State)
	A.1.40.10. textRepresentation()
	A.1.40.11. toString()
	A.1.40.12. whileOpenState()
	A.1.40.13. whyNotRunningState()
	A.1.40.14. workflowState()

	A.1.41. Interface WfObject
	A.1.41.1. Synopsis

	A.1.42. Interface WfProcess
	A.1.42.1. Synopsis
	A.1.42.2. activitiesInState(String)
	A.1.42.3. manager()
	A.1.42.4. requester()
	A.1.42.5. result()
	A.1.42.6. setRequester(WfRequester)
	A.1.42.7. start()
	A.1.42.8. steps()

	A.1.43. Interface WfProcessMgr
	A.1.43.1. Synopsis
	A.1.43.2. DISABLED
	A.1.43.3. ENABLED
	A.1.43.4. category()
	A.1.43.5. contextSignature()
	A.1.43.6. createProcess(WfRequester)
	A.1.43.7. description()
	A.1.43.8. name()
	A.1.43.9. processes()
	A.1.43.10. processMgrState()
	A.1.43.11. resultSignature()
	A.1.43.12. setProcessMgrState(int)
	A.1.43.13. version()

	A.1.44. Interface WfRequester
	A.1.44.1. Synopsis
	A.1.44.2. isMemberOfPerformers(WfProcess)
	A.1.44.3. performers()

	A.1.45. Interface WfResource
	A.1.45.1. Synopsis
	A.1.45.2. isMemberOfWorkItems(WfAssignment)
	A.1.45.3. release(WfAssignment, String)
	A.1.45.4. resourceKey()
	A.1.45.5. resourceName()
	A.1.45.6. workItems()

	A.1.46. Interface WfStateAuditEvent
	A.1.46.1. Synopsis
	A.1.46.2. newState()
	A.1.46.3. oldState()

	A.2. Package de.danet.an.workflow.api
	A.2.1. Additional Information
	A.2.2. Interface Activity
	A.2.2.1. Synopsis
	A.2.2.2. abandon(String)
	A.2.2.3. activityInfo()
	A.2.2.4. blockActivity()
	A.2.2.5. changeAssignment(WfResource, WfResource)
	A.2.2.6. choose()
	A.2.2.7. deadlines()
	A.2.2.8. executor()
	A.2.2.9. getResource(WfAssignment)
	A.2.2.10. handledExceptions()
	A.2.2.11. implementation()
	A.2.2.12. joinMode()
	A.2.2.13. nextActivities()
	A.2.2.14. performer()
	A.2.2.15. removeAssignment(WfResource)
	A.2.2.16. splitMode()
	A.2.2.17. uniqueKey()

	A.2.3. Class Activity.ClosedCompletedState
	A.2.3.1. Synopsis
	A.2.3.2. Activity.ClosedCompletedState(String)
	A.2.3.3. ABANDONED
	A.2.3.4. NORMAL
	A.2.3.5. getParent()
	A.2.3.6. howClosedState()
	A.2.3.7. whileOpenState()
	A.2.3.8. whyNotRunningState()
	A.2.3.9. workflowState()

	A.2.4. Class Activity.DeadlineInfo
	A.2.4.1. Synopsis
	A.2.4.2. Activity.DeadlineInfo(int, String, String, int)
	A.2.4.3. ASYNCHR
	A.2.4.4. STATE_ACTIVE
	A.2.4.5. STATE_CANCELED
	A.2.4.6. STATE_INITIAL
	A.2.4.7. STATE_REACHED
	A.2.4.8. SYNCHR
	A.2.4.9. getCondition()
	A.2.4.10. getExceptionName()
	A.2.4.11. getExecutionMode()
	A.2.4.12. getState()

	A.2.5. Interface Activity.Implementation
	A.2.5.1. Synopsis

	A.2.6. Class Activity.Info
	A.2.6.1. Synopsis
	A.2.6.2. Activity.Info(ActivityUniqueKey, String, String, int, Date, String, String)
	A.2.6.3. description()
	A.2.6.4. lastStateTime()
	A.2.6.5. name()
	A.2.6.6. priority()
	A.2.6.7. processDescription()
	A.2.6.8. processName()
	A.2.6.9. uniqueKey()

	A.2.7. Class Activity.JoinAndSplitMode
	A.2.7.1. Synopsis
	A.2.7.2. Activity.JoinAndSplitMode(String)
	A.2.7.3. AND
	A.2.7.4. XOR
	A.2.7.5. fromString(String)
	A.2.7.6. isAND()
	A.2.7.7. isXOR()
	A.2.7.8. toString()

	A.2.8. Class Activity.StartFinishMode
	A.2.8.1. Synopsis
	A.2.8.2. Activity.StartFinishMode(String)
	A.2.8.3. AUTOMATIC
	A.2.8.4. MANUAL
	A.2.8.5. fromString(String)
	A.2.8.6. toString()

	A.2.9. Interface Activity.SubFlowImplementation
	A.2.9.1. Synopsis
	A.2.9.2. ASYNCHR
	A.2.9.3. SYNCHR
	A.2.9.4. execution()
	A.2.9.5. packageId()
	A.2.9.6. processId()
	A.2.9.7. processKey()

	A.2.10. Interface Activity.ToolImplementation
	A.2.10.1. Synopsis
	A.2.10.2. description()
	A.2.10.3. id()

	A.2.11. Class ActivityUniqueKey
	A.2.11.1. Synopsis
	A.2.11.2. ActivityUniqueKey(String, String, String)
	A.2.11.3. ActivityUniqueKey(WfActivity)
	A.2.11.4. activityKey()
	A.2.11.5. equals(Object)
	A.2.11.6. hashCode()
	A.2.11.7. managerName()
	A.2.11.8. processKey()
	A.2.11.9. toString()

	A.2.12. Exception AlreadyAssignedException
	A.2.12.1. Synopsis
	A.2.12.2. AlreadyAssignedException()
	A.2.12.3. AlreadyAssignedException(String)

	A.2.13. Interface Application
	A.2.13.1. Synopsis
	A.2.13.2. description()
	A.2.13.3. id()

	A.2.14. Interface Batch
	A.2.14.1. Synopsis
	A.2.14.2. execute(Batch.Context)

	A.2.15. Interface Batch.Context
	A.2.15.1. Synopsis
	A.2.15.2. isRollbackOnly()

	A.2.16. Exception CannotRemoveException
	A.2.16.1. Synopsis
	A.2.16.2. CannotRemoveException(String)

	A.2.17. Interface Channel
	A.2.17.1. Synopsis
	A.2.17.2. name()
	A.2.17.3. process()
	A.2.17.4. receiveMessage()
	A.2.17.5. receiveMessage(long)
	A.2.17.6. sendMessage(Map)

	A.2.18. Interface Configuration
	A.2.18.1. Synopsis
	A.2.18.2. workflowEngineInstanceKey()

	A.2.19. Class DefaultProcessData
	A.2.19.1. Synopsis
	A.2.19.2. DefaultProcessData()
	A.2.19.3. DefaultProcessData(Map)
	A.2.19.4. toString()

	A.2.20. Class DefaultRequester
	A.2.20.1. Synopsis
	A.2.20.2. DefaultRequester(WorkflowService)
	A.2.20.3. DefaultRequester(WorkflowService, boolean)
	A.2.20.4. DefaultRequester(WorkflowService, WfAuditHandler)
	A.2.20.5. equals(Object)
	A.2.20.6. hashCode()
	A.2.20.7. isMemberOfPerformers(WfProcess)
	A.2.20.8. performers()
	A.2.20.9. toString()

	A.2.21. Interface EventSubscriber
	A.2.21.1. Synopsis
	A.2.21.2. receive()
	A.2.21.3. receive(long)
	A.2.21.4. receiveNoWait()
	A.2.21.5. setEventHandler(WfAuditHandler)

	A.2.22. Interface ExecutionObject
	A.2.22.1. Synopsis
	A.2.22.2. changeState(WfExecutionObject.State)
	A.2.22.3. debugEnabled()
	A.2.22.4. typedState()

	A.2.23. Interface ExternalReference
	A.2.23.1. Synopsis
	A.2.23.2. location()
	A.2.23.3. namespace()
	A.2.23.4. xref()

	A.2.24. Error FactoryConfigurationError
	A.2.24.1. Synopsis
	A.2.24.2. FactoryConfigurationError()
	A.2.24.3. FactoryConfigurationError(String)
	A.2.24.4. FactoryConfigurationError(String, Throwable)

	A.2.25. Class FormalParameter
	A.2.25.1. Synopsis
	A.2.25.2. FormalParameter(String, String, FormalParameter.Mode, Object)
	A.2.25.3. equals(Object)
	A.2.25.4. hashCode()
	A.2.25.5. id()
	A.2.25.6. index()
	A.2.25.7. mode()
	A.2.25.8. toString()
	A.2.25.9. type()

	A.2.26. Class FormalParameter.Mode
	A.2.26.1. Synopsis
	A.2.26.2. IN
	A.2.26.3. INOUT
	A.2.26.4. OUT
	A.2.26.5. fromString(String)
	A.2.26.6. toString()

	A.2.27. Interface GroupResource
	A.2.27.1. Synopsis

	A.2.28. Exception ImportException
	A.2.28.1. Synopsis
	A.2.28.2. ImportException(String, List)
	A.2.28.3. messages()

	A.2.29. Exception InvalidIdException
	A.2.29.1. Synopsis
	A.2.29.2. InvalidIdException(String)

	A.2.30. Exception InvalidKeyException
	A.2.30.1. Synopsis
	A.2.30.2. InvalidKeyException(String)

	A.2.31. Class MethodInvocationBatch
	A.2.31.1. Synopsis
	A.2.31.2. MethodInvocationBatch()
	A.2.31.3. MethodInvocationBatch(boolean)
	A.2.31.4. addInvocation(int, String, String[], Object[], boolean)
	A.2.31.5. addInvocation(Object, String, String[], Object[])
	A.2.31.6. execute(Batch.Context)

	A.2.32. Class MethodInvocationBatch.Result
	A.2.32.1. Synopsis
	A.2.32.2. MethodInvocationBatch.Result(Object[], boolean)
	A.2.32.3. firstException()
	A.2.32.4. hasExceptions()
	A.2.32.5. result(int)
	A.2.32.6. resultAsDate(int)
	A.2.32.7. resultAsInt(int)
	A.2.32.8. resultAsString(int)
	A.2.32.9. results()

	A.2.33. Exception NoSuchResourceException
	A.2.33.1. Synopsis
	A.2.33.2. NoSuchResourceException(String)

	A.2.34. Interface Participant
	A.2.34.1. Synopsis
	A.2.34.2. getId()
	A.2.34.3. getName()
	A.2.34.4. getParticipantType()
	A.2.34.5. getResourceSelection()

	A.2.35. Class Participant.ParticipantType
	A.2.35.1. Synopsis
	A.2.35.2. HUMAN
	A.2.35.3. ORGANIZATIONAL_UNIT
	A.2.35.4. RESOURCE
	A.2.35.5. RESOURCE_SET
	A.2.35.6. ROLE
	A.2.35.7. SYSTEM
	A.2.35.8. fromString(String)
	A.2.35.9. isHuman()
	A.2.35.10. isOrganizationUnit()
	A.2.35.11. isResource()
	A.2.35.12. isResourceSet()
	A.2.35.13. isRole()
	A.2.35.14. isSystem()
	A.2.35.15. toString()

	A.2.36. Class PrioritizedMessage
	A.2.36.1. Synopsis
	A.2.36.2. PrioritizedMessage(PrioritizedMessage.Priority, String)
	A.2.36.3. PrioritizedMessage(PrioritizedMessage.Priority, String, Object[])
	A.2.36.4. message()
	A.2.36.5. message(Locale)
	A.2.36.6. priority()
	A.2.36.7. toString()
	A.2.36.8. unmappedMessage()

	A.2.37. Class PrioritizedMessage.Priority
	A.2.37.1. Synopsis
	A.2.37.2. PrioritizedMessage.Priority(int, String)
	A.2.37.3. DEBUG
	A.2.37.4. ERROR
	A.2.37.5. FATAL
	A.2.37.6. INFO
	A.2.37.7. WARN
	A.2.37.8. compareTo(Object)
	A.2.37.9. toString()

	A.2.38. Interface Process
	A.2.38.1. Synopsis
	A.2.38.2. activityByKey(String)
	A.2.38.3. createTime()
	A.2.38.4. processDefinition()
	A.2.38.5. setDebugEnabled(boolean)
	A.2.38.6. transitions()

	A.2.39. Interface ProcessClosedAuditEvent
	A.2.39.1. Synopsis
	A.2.39.2. result()

	A.2.40. Interface ProcessDefinition
	A.2.40.1. Synopsis
	A.2.40.2. AUDIT_SELECTION_ALL_EVENTS
	A.2.40.3. AUDIT_SELECTION_NO_EVENTS
	A.2.40.4. AUDIT_SELECTION_PROCESS_CLOSED_EVENTS_ONLY
	A.2.40.5. AUDIT_SELECTION_STATE_EVENTS_ONLY
	A.2.40.6. REMOVE_AUTOMATIC
	A.2.40.7. REMOVE_COMPLETED
	A.2.40.8. REMOVE_MANUAL
	A.2.40.9. applicationById(String)
	A.2.40.10. applications()
	A.2.40.11. auditEventSelection()
	A.2.40.12. cleanupMode()
	A.2.40.13. contextSignature()
	A.2.40.14. formalParameters()
	A.2.40.15. mgrName()
	A.2.40.16. packageId()
	A.2.40.17. packageName()
	A.2.40.18. participantById(String)
	A.2.40.19. participants()
	A.2.40.20. processHeader()
	A.2.40.21. processId()
	A.2.40.22. processName()
	A.2.40.23. removeClosedProcess()
	A.2.40.24. resultSignature()
	A.2.40.25. storeAuditEvents()
	A.2.40.26. toJDOM()
	A.2.40.27. toSAX()
	A.2.40.28. toXPDL()
	A.2.40.29. version()

	A.2.41. Interface ProcessDefinition.PackageHeaderData
	A.2.41.1. Synopsis
	A.2.41.2. costUnit()
	A.2.41.3. created()
	A.2.41.4. description()
	A.2.41.5. documentation()
	A.2.41.6. priorityUnit()
	A.2.41.7. vendor()
	A.2.41.8. xpdlVersion()

	A.2.42. Interface ProcessDefinition.ProcessHeaderData
	A.2.42.1. Synopsis
	A.2.42.2. author()
	A.2.42.3. codepage()
	A.2.42.4. countrykey()
	A.2.42.5. created()
	A.2.42.6. description()
	A.2.42.7. limit()
	A.2.42.8. packageHeader()
	A.2.42.9. priority()
	A.2.42.10. publicationStatus()
	A.2.42.11. responsibles()
	A.2.42.12. timeEstimationDuration()
	A.2.42.13. timeEstimationWaiting()
	A.2.42.14. timeEstimationWorking()
	A.2.42.15. validFrom()
	A.2.42.16. validTo()
	A.2.42.17. version()

	A.2.43. Interface ProcessDefinitionDirectory
	A.2.43.1. Synopsis
	A.2.43.2. importProcessDefinitions(byte[])
	A.2.43.3. importProcessDefinitions(String)
	A.2.43.4. isEnabled(String, String)
	A.2.43.5. lookupProcessDefinition(String, String)
	A.2.43.6. processDefinitionExists(String, String)
	A.2.43.7. processDefinitions()
	A.2.43.8. processMgr(String, String)
	A.2.43.9. removeProcessDefinition(String, String)
	A.2.43.10. setEnabled(String, String, boolean)

	A.2.44. Interface ProcessDirectory
	A.2.44.1. Synopsis
	A.2.44.2. lookupActivity(ActivityUniqueKey)
	A.2.44.3. lookupActivityInfo(ActivityUniqueKey)
	A.2.44.4. lookupProcess(String, String)
	A.2.44.5. processes()
	A.2.44.6. processes(FilterCriterion, SortCriterion)
	A.2.44.7. processMgrNames()
	A.2.44.8. processNames()
	A.2.44.9. removeProcess(WfProcess)

	A.2.45. Interface ProcessMgr
	A.2.45.1. Synopsis
	A.2.45.2. findByDataItem(String, String)
	A.2.45.3. processByKey(String)

	A.2.46. Interface RangeAccess
	A.2.46.1. Synopsis
	A.2.46.2. itemCount()
	A.2.46.3. items(long, long)

	A.2.47. Interface RoleResource
	A.2.47.1. Synopsis

	A.2.48. Interface SAXEventBuffer
	A.2.48.1. Synopsis
	A.2.48.2. emit(ContentHandler)

	A.2.49. Interface Transition
	A.2.49.1. Synopsis
	A.2.49.2. COND_TYPE_CONDITION
	A.2.49.3. COND_TYPE_DEFAULTEXCEPTION
	A.2.49.4. COND_TYPE_EXCEPTION
	A.2.49.5. COND_TYPE_OTHERWISE
	A.2.49.6. condition()
	A.2.49.7. conditionType()
	A.2.49.8. from()
	A.2.49.9. group()
	A.2.49.10. id()
	A.2.49.11. order()
	A.2.49.12. to()

	A.2.50. Interface UserResource
	A.2.50.1. Synopsis

	A.2.51. Interface WorkflowService
	A.2.51.1. Synopsis
	A.2.51.2. asResource(Principal)
	A.2.51.3. authorizers(WfResource)
	A.2.51.4. caller()
	A.2.51.5. configuration()
	A.2.51.6. createEventSubscriber()
	A.2.51.7. createEventSubscriber(String, String)
	A.2.51.8. doFinish(WfActivity, ProcessData)
	A.2.51.9. eventReceiver(WfAuditHandler)
	A.2.51.10. executeBatch(Batch)
	A.2.51.11. getChannel(WfProcess, String)
	A.2.51.12. getChannel(WfProcess, String, boolean)
	A.2.51.13. knownResources()
	A.2.51.14. processDefinitionDirectory()
	A.2.51.15. processDirectory()
	A.2.51.16. registerRequester(WfRequester)
	A.2.51.17. release(WfObject)
	A.2.51.18. requestedBy(WfRequester)
	A.2.51.19. resourceByKey(String)
	A.2.51.20. serviceProperties()

	A.2.52. Class WorkflowServiceFactory
	A.2.52.1. Synopsis
	A.2.52.2. WorkflowServiceFactory()
	A.2.52.3. getProperties()
	A.2.52.4. newInstance()
	A.2.52.5. newWorkflowService()
	A.2.52.6. setProperties(Map)
	A.2.52.7. setProperty(String, Object)

	A.3. Package de.danet.an.workflow.spis.aii
	A.3.1. Additional Information
	A.3.2. Exception ApplicationNotStoppedException
	A.3.2.1. Synopsis
	A.3.2.2. ApplicationNotStoppedException(String)

	A.3.3. Exception CannotExecuteException
	A.3.3.1. Synopsis
	A.3.3.2. CannotExecuteException(String)
	A.3.3.3. CannotExecuteException(String, Throwable)

	A.3.4. Interface ContextRequester
	A.3.4.1. Synopsis
	A.3.4.2. setToolAgentContext(ToolAgentContext)

	A.3.5. Interface ExceptionMappingProvider
	A.3.5.1. Synopsis
	A.3.5.2. exceptionMappings()

	A.3.6. Class ExceptionMappingProvider.ExceptionMapping
	A.3.6.1. Synopsis
	A.3.6.2. ExceptionMappingProvider.ExceptionMapping(Class)
	A.3.6.3. ExceptionMappingProvider.ExceptionMapping(Class, String)
	A.3.6.4. ExceptionMappingProvider.ExceptionMapping(Class, String, boolean)
	A.3.6.5. getJavaException()
	A.3.6.6. getProcessException()
	A.3.6.7. getSuspendActivity()

	A.3.7. Interface ExecutionModeProvider
	A.3.7.1. Synopsis
	A.3.7.2. ASYNCHR
	A.3.7.3. SYNCHR
	A.3.7.4. executionMode()

	A.3.8. Interface ResultProvider
	A.3.8.1. Synopsis
	A.3.8.2. result()

	A.3.9. Class ResultProvider.ExceptionResult
	A.3.9.1. Synopsis
	A.3.9.2. ResultProvider.ExceptionResult(String)
	A.3.9.3. ResultProvider.ExceptionResult(String, boolean)
	A.3.9.4. exceptionName()
	A.3.9.5. suspendActivity()

	A.3.10. Interface ToolAgent
	A.3.10.1. Synopsis
	A.3.10.2. invoke(Activity, FormalParameter[], Map)
	A.3.10.3. terminate(Activity)

	A.3.11. Interface ToolAgentContext
	A.3.11.1. Synopsis
	A.3.11.2. abandonActivity(ResultProvider.ExceptionResult)
	A.3.11.3. abandonActivity(String)
	A.3.11.4. applicationId()
	A.3.11.5. finishActivity(Map)
	A.3.11.6. lookupActivity(ActivityUniqueKey)

	A.3.12. Interface XMLArgumentTypeProvider
	A.3.12.1. Synopsis
	A.3.12.2. XML_AS_JDOM
	A.3.12.3. XML_AS_SAX
	A.3.12.4. XML_AS_W3C_DOM
	A.3.12.5. requestedXMLArgumentType()

	A.4. Package de.danet.an.workflow.spis.ras
	A.4.1. Additional Information
	A.4.2. Interface ActivityFinder
	A.4.2.1. Synopsis
	A.4.2.2. find(String)

	A.4.3. Error FactoryConfigurationError
	A.4.3.1. Synopsis
	A.4.3.2. FactoryConfigurationError()
	A.4.3.3. FactoryConfigurationError(String)

	A.4.4. Exception NoSuchActivityException
	A.4.4.1. Synopsis
	A.4.4.2. NoSuchActivityException(String)

	A.4.5. Interface ResourceAssignmentService
	A.4.5.1. Synopsis
	A.4.5.2. asResource(Principal)
	A.4.5.3. assignments(ActivityFinder, String, WfActivity)
	A.4.5.4. authorizers(WfResource)
	A.4.5.5. autoAssignResources(ActivityFinder, String, WfActivity, Principal, Participant)
	A.4.5.6. changeAssignment(ActivityFinder, String, WfActivity, WfResource, WfResource)
	A.4.5.7. getResource(WfAssignment)
	A.4.5.8. isMemberOfWorkItems(WfResource, WfAssignment)
	A.4.5.9. knownResources()
	A.4.5.10. removeAssignment(ActivityFinder, String, WfActivity, WfResource)
	A.4.5.11. resourceByKey(String)
	A.4.5.12. workItems(WfResource)

	A.4.6. Class ResourceAssignmentServiceFactory
	A.4.6.1. Synopsis
	A.4.6.2. ResourceAssignmentServiceFactory()
	A.4.6.3. newInstance()
	A.4.6.4. newResourceAssignmentService()

	A.5. Package de.danet.an.workflow.spis.rms
	A.5.1. Additional Information
	A.5.2. Class DefaultGroupResource
	A.5.2.1. Synopsis
	A.5.2.2. DefaultGroupResource(ResourceAssignmentContext, String, String)
	A.5.2.3. getId()
	A.5.2.4. getId(String)
	A.5.2.5. isValidKey(String)

	A.5.3. Class DefaultResource
	A.5.3.1. Synopsis
	A.5.3.2. DefaultResource(ResourceAssignmentContext, String, String)
	A.5.3.3. isMemberOfWorkItems(WfAssignment)
	A.5.3.4. release(WfAssignment, String)
	A.5.3.5. resourceKey()
	A.5.3.6. resourceName()
	A.5.3.7. workItems()

	A.5.4. Class DefaultRoleResource
	A.5.4.1. Synopsis
	A.5.4.2. DefaultRoleResource(ResourceAssignmentContext, String, String)
	A.5.4.3. getId()
	A.5.4.4. getId(String)
	A.5.4.5. isValidKey(String)

	A.5.5. Class DefaultUserResource
	A.5.5.1. Synopsis
	A.5.5.2. DefaultUserResource(ResourceAssignmentContext, String, String)
	A.5.5.3. getId()
	A.5.5.4. getId(String)
	A.5.5.5. isValidKey(String)

	A.5.6. Error FactoryConfigurationError
	A.5.6.1. Synopsis
	A.5.6.2. FactoryConfigurationError(Exception)
	A.5.6.3. FactoryConfigurationError(String)

	A.5.7. Interface ResourceAssignmentContext
	A.5.7.1. Synopsis
	A.5.7.2. isMemberOfWorkItems(WfResource, WfAssignment)
	A.5.7.3. workItems(WfResource)

	A.5.8. Interface ResourceManagementService
	A.5.8.1. Synopsis
	A.5.8.2. asResource(Principal)
	A.5.8.3. authorizers(WfResource)
	A.5.8.4. listResources()
	A.5.8.5. resourceByKey(String)
	A.5.8.6. selectResources(Object)

	A.5.9. Class ResourceManagementServiceFactory
	A.5.9.1. Synopsis
	A.5.9.2. ResourceManagementServiceFactory()
	A.5.9.3. getResourceAssignmentContext()
	A.5.9.4. getResourceAssignmentService()
	A.5.9.5. newInstance()
	A.5.9.6. newResourceManagementService()
	A.5.9.7. setResourceAssignmentContext(ResourceAssignmentContext)
	A.5.9.8. setResourceAssignmentService(ResourceAssignmentService)

	A.5.10. Exception ResourceNotFoundException
	A.5.10.1. Synopsis
	A.5.10.2. ResourceNotFoundException()
	A.5.10.3. ResourceNotFoundException(String)

	A.6. Package de.danet.an.workflow.tools.util
	A.6.1. Additional Information
	A.6.2. Interface DirectInvocable
	A.6.2.1. Synopsis

	A.6.3. Class SimpleApplicationAgent
	A.6.3.1. Synopsis
	A.6.3.2. SimpleApplicationAgent()
	A.6.3.3. applicationDirectory()
	A.6.3.4. terminate(Activity)

	A.6.4. Interface SimpleApplicationDirectory
	A.6.4.1. Synopsis
	A.6.4.2. infoByActivity(ActivityUniqueKey)
	A.6.4.3. infosByApplication(String)
	A.6.4.4. infosByKey(String, String)
	A.6.4.5. infosByResource(String, String)
	A.6.4.6. instanceInfo(long)
	A.6.4.7. registerInstance(String, Activity, Object, boolean)
	A.6.4.8. registerInstance(String, String, Activity, Object, boolean)
	A.6.4.9. removeInstance(long)
	A.6.4.10. updateInvokingActivity(long, ActivityUniqueKey)
	A.6.4.11. updateResourceKey(long, String)
	A.6.4.12. updateState(long, Object)

	A.6.5. Class SimpleApplicationDirectoryEJB
	A.6.5.1. Synopsis
	A.6.5.2. SimpleApplicationDirectoryEJB()
	A.6.5.3. ejbActivate()
	A.6.5.4. ejbCreate()
	A.6.5.5. ejbPassivate()
	A.6.5.6. ejbRemove()
	A.6.5.7. infoByActivity(ActivityUniqueKey)
	A.6.5.8. infosByApplication(String)
	A.6.5.9. infosByKey(String, String)
	A.6.5.10. infosByResource(String, String)
	A.6.5.11. instanceInfo(long)
	A.6.5.12. registerInstance(String, Activity, Object, boolean)
	A.6.5.13. registerInstance(String, String, Activity, Object, boolean)
	A.6.5.14. removeInstance(long)
	A.6.5.15. setSessionContext(SessionContext)
	A.6.5.16. updateInvokingActivity(long, ActivityUniqueKey)
	A.6.5.17. updateResourceKey(long, String)
	A.6.5.18. updateState(long, Object)

	A.6.6. Interface SimpleApplicationDirectoryHome
	A.6.6.1. Synopsis

	A.6.7. Interface SimpleApplicationDirectoryLocal
	A.6.7.1. Synopsis
	A.6.7.2. infoByActivity(ActivityUniqueKey)
	A.6.7.3. infosByApplication(String)
	A.6.7.4. infosByKey(String, String)
	A.6.7.5. infosByResource(String, String)
	A.6.7.6. instanceInfo(long)
	A.6.7.7. registerInstance(String, Activity, Object, boolean)
	A.6.7.8. registerInstance(String, String, Activity, Object, boolean)
	A.6.7.9. removeInstance(long)
	A.6.7.10. updateInvokingActivity(long, ActivityUniqueKey)
	A.6.7.11. updateResourceKey(long, String)
	A.6.7.12. updateState(long, Object)

	A.6.8. Interface SimpleApplicationDirectoryLocalHome
	A.6.8.1. Synopsis

	A.6.9. Class SimpleApplicationDirectoryLookup
	A.6.9.1. Synopsis
	A.6.9.2. execute(Batch.Context)

	A.6.10. Class SimpleApplicationInfo
	A.6.10.1. Synopsis
	A.6.10.2. activityUniqueKey()
	A.6.10.3. assignedAt()
	A.6.10.4. id()
	A.6.10.5. resourceKey()
	A.6.10.6. state()

	Appendix B. The service provider classes
	B.1. Package de.danet.an.workflow.ejbs.client
	B.1.1. Additional Information
	B.1.2. Class StandardWorkflowServiceFactory
	B.1.2.1. Synopsis
	B.1.2.2. StandardWorkflowServiceFactory()

	B.2. Package de.danet.an.workflow.assignment
	B.2.1. Additional Information
	B.2.2. Class StandardResourceAssignmentServiceFactory
	B.2.2.1. Synopsis
	B.2.2.2. StandardResourceAssignmentServiceFactory()
	B.2.2.3. equals(Object)
	B.2.2.4. hashCode()

	B.3. Package de.danet.an.workflow.rmsimpls.dbrms
	B.3.1. Class DatabaseRmsFactory
	B.3.1.1. Synopsis
	B.3.1.2. DatabaseRmsFactory()

	B.4. Package de.danet.an.workflow.rmsimpls.eisrms
	B.4.1. Class EisRmsFactory
	B.4.1.1. Synopsis
	B.4.1.2. EisRmsFactory()

	B.5. Package de.danet.an.workflow.rmsimpls.eisrms.aci
	B.5.1. Additional Information
	B.5.2. Interface RmsConnection
	B.5.2.1. Synopsis
	B.5.2.2. authorizers(String)
	B.5.2.3. close()
	B.5.2.4. listResources()
	B.5.2.5. lookupResource(String)
	B.5.2.6. lookupUserByAccountName(String)
	B.5.2.7. selectResources(Object)

	B.5.3. Interface RmsConnectionFactory
	B.5.3.1. Synopsis

	B.5.4. Class RmsEntry
	B.5.4.1. Synopsis
	B.5.4.2. RmsEntry(int, String, String)
	B.5.4.3. getDisplayName()
	B.5.4.4. getKey()
	B.5.4.5. getType()

	Appendix C. The demo applications
	C.1. Installing a demo application
	C.1.1. Installing JBoss
	C.1.2. Create JBoss server configuration
	C.1.3. Creating datasources etc.
	C.1.4. Working with the Pluto based demo
	C.1.5. Working with the Liferay based demo

	Appendix D. Installing Liferay
	D.1. Creating a configuration
	D.2. Deploying Liferay
	D.2.1. Disabling the default root context application
	D.2.2. Unpacking the JBoss extension libraries
	D.2.3. Unpacking the EAR
	D.2.4. Fixing the transaction manager configuration
	D.2.5. Adapting the portal configuration
	D.2.6. Configure security

	D.3. Providing a database
	D.4. Starting JBoss

	Appendix E. Notes
	Appendix F. GNU General Public License
	F.1. Preamble
	F.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	F.2.1. Section 0
	F.2.2. Section 1
	F.2.3. Section 2
	F.2.4. Section 3
	F.2.5. Section 4
	F.2.6. Section 5
	F.2.7. Section 6
	F.2.8. Section 7
	F.2.9. Section 8
	F.2.10. Section 9
	F.2.11. Section 10
	F.2.12. NO WARRANTY
	F.2.13. Section 12

	Index

