
The Danet Workflow Component

Maintenance Guide

Dr. Michael Lipp, Danet GmbH
Dr. Christian Weidauer, Danet GmbH

Holger Schlüter, Danet GmbH
Horst-Günther Barzik, Danet GmbH

For version 2.1.2

The Danet Workflow Component: Maintenance Guide
by Dr. Michael Lipp, Dr. Christian Weidauer, Holger Schlüter, and Horst-Günther Barzik
Copyright © 2003 Danet GmbH

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Soft-
ware Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Draft Draft

Draft Draft

Table of Contents
Introduction ... vii
1. Development Environment .. 1

1.1. Personal Properties .. 1
1.2. Building .. 1
1.3. JBoss .. 1

2. Design Patterns and Practices ... 3
2.1. Separation of business logic .. 3

2.1.1. Introduction ... 3
2.1.2. Our approach ... 3
2.1.3. Compromises ... 4

2.2. Generating XML views .. 6
3. Using Cocoon ... 7

3.1. A web based front-end model .. 7
3.1.1. Basic layout ... 7

3.2. XSP development .. 8
3.2.1. XSP structure ... 8
3.2.2. Support Logicsheet ... 9

3.3. Global Stylesheet ...11
3.3.1. General page setup ...11
3.3.2. Accessing internationalized text ..11
3.3.3. Accessing user preferences ..11
3.3.4. Encoding a link parameter ...12
3.3.5. Adding a parameter to a URL ...12
3.3.6. Replacing a parameter within a URL ...12
3.3.7. Generating links ..12
3.3.8. Generating forms and fields ...13
3.3.9. Accessing the reload-url ..14
3.3.10. Creating a new sort string ..14
3.3.11. Creating a table header entry for a sortable column14
3.3.12. Creating a tab menu ..15
3.3.13. Formatting date and time ...15
3.3.14. Additional string operations ...15
3.3.15. Generating drop down select box ..15

3.4. Sorting table columns ..18
4. Implementation Guidelines ...21

4.1. Logging ..21
4.1.1. General usage ...21
4.1.2. Using priorities ..21
4.1.3. Logging exceptions ..21

4.2. UI Messages ..22
4.3. Transaction Handling ..23
4.4. How to write a tool ...24

5. Documentation ...27
6. Tips & Tricks ...29

6.1. Testing stylesheet layout ..29
Index ...31

Draft Draft

v

vi

Introduction
...

Since this is the manual for developers, it refers to the user API as well as to the internal API of the
workflow engine. The JavaDoc of the internal API is not in the binary distribution, because it is rel-
evant to developers of the engine itself only. You can generate the documentation by running "ant
doc" in the $DIST/src subdirectory of the source distribution. You can then start browsing the
JavaDoc with $DIST/dist/doc/workflow/api/index.html.

Draft Draft

vii

viii

Chapter 1. Development Environment
1.1. Personal Properties

For compilation the file "ant.properties" has to be created in directory "WfMOpen/per-
sonal-props". This file contains settings for your personal development environment. To find
out which properties have to be set or adapted, look at the file "WfMOpen/con-
fig-props/ant.properties" which contains defaults (if there are reasonable defaults) or
hints about what you have to define in your personal properties file. Note that the file in "WfMOpen/
config-props" is under CVS control and likely to change from release to release, while the file
in "WfMOpen/personal-props" is not and will retain its contents even when you update (the
message here is: don't change "WfMOpen/config-props/ant.properties" unless you are
modifying the build system or have to introduce some new developer dependant property - if you
just want to get things running, make changes to "WfMOpen/person-
al-props/ant.properties").

To log debug information from the application the file config-
props/log4j-appl.properties has to be copied to directory "WfMOpen/person-
al-props" and can be adapted to your needs. Please note that the appender "ui-messages"
and the category "ui" must not be removed. Otherwise the WebClient user will not get feedback
(errors, warnings, info) anymore.

Compilation will fail if there is no oracle driver. The Oracle JDBC driver requires strange handling
of BLOBs (they should have put sequence diagrams in the JDBC specification). We have provided a
wrapper that allows transparent handling of BLOBs for all types of databases. In order to compile
this, however, you need some proprietary classes from the oracle driver. As Oracle does not permit
the redistribution of its JDBC driver, you will have to get one yourself.

The driver must be renamed to oracle-*-JDBC-*.jar (classes12.zip really isn't it), e.g.
oracle-8.1.7-JDBC-thin-JDK1.2.x.jar, and put in the tools directory.

1.2. Building
After setting your personal properties, you can build WfMOpen by invoking "ant" in the directory
WfMOpen/src.

Useful targets are:

ear Builds the ear (and all libraries needed to assemble the ear). The results are created
in WfMOpen/dist/... using the same layout as the binary distribution.

deploy Builds the ear and deploys it in a running JBoss. The deployment is "temporary",
i.e. the ear is not copied to JBoss; so after restarting JBoss, you have to deploy
again.

dist Builds everything in WfMOpen/dist/....

1.3. JBoss
Since newer versions of the packages org.w3c.dom, org.xml.sax, org.xml.sax.ext and
org.xml.sax.helpers are used the Endorsed Standards Override Mechanism of the JDK [ht-
tp://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html] starting JBoss needs to be supported.
Therefore the system property java.endorsed.dirs needs to be set to the directory
$DIST/tools/endorsed.

Furthermore, it might be necessary to define a proxy for your http connection. To provide this in-

Draft Draft

1

http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html

formation to the java virtual machine start JBoss as follows (see "J2SDK Networking Properties"
[http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html]):

JAVA_OPTS="-Djava.endorsed.dirs=$DIST/tools/endorsed -
DproxySet=true -Dhttp.proxyHost=<PROXY HOST> -Dht-
tp.proxyPort=<PORT>" ./run.sh

Apart from the JBoss installation specific settings (see Section 1.1, “Personal Properties” [1]) an ad-
ditional security service has to be installed. Therefore the content of file "WfMOpen/
src/de/danet/an/workflow/resources/login-conf.xml.insert" needs to be
inserted in file "$JBOSS_HOME/server/default/conf/login-config.xml" in front
of the closing </policy> tag.

Draft JBoss Draft

2

http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html
http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html

Chapter 2. Design Patterns and
Practices
2.1. Separation of business logic
2.1.1. Introduction

If you use EJBs as base components for your system, you soon find that the source code file be-
comes rather long. The reason is that an EJB has to handle at least three tasks:

• provide the distribution logic (roughly everything related to the home interface)

• provide persistence

• implement business logic

One way to reduce the amount of code assembled in EJBs has traditionally been to separate the per-
sistence related aspects in a DAO (Data Access Object). This pattern has the additional advantage of
allowing the persistence mechanism to be exchanged without modifying the code of the EJB. The
implementation of our workflow components, however, uses a different approach.

2.1.2. Our approach
If you design a system that is not distributed, you usually start with the implementation of your do-
main classes. While they may not exactly match the classes you used during analysis, they are usu-
ally quite close which keeps the learning curve low for new team members. So, why not stick to that
approach and put the domain classes in the center of the design, using EJBs only to add a distribu-
tion and persistence mechanism to the domain classes.

According to this approach, you will find the following package pattern in our design:

...domain Defines the domain classes with an interface DomainClass
... and provides an incomplete implementation as class Ab-
stractDomainClass (Sometimes it is possible to imple-
ment the class completely. In these cases the class is named class
DefaultDomainClass....) The abstract implementation
provides all business logic that is independent of a particular distribu-
tion and persistence mechanism. Classes in the domain package ref-
erence each other using the interface only.

...ejbs[.subpkg] Provides the implementation of distribution and persistence for the
domain classes using EJBs. The EJBs' remote interfaces extend the
corresponding domain interfaces and the EJBs extend the abstract do-
main classes.

This pattern has the advantage of clearly separating business logic from the distribution and persist-
ence implementation. You could perfectly well reuse the abstract classes from the domain package
for e.g. a JINI based implementation. Of course, you have to declare that the methods defined in the
domain interfaces throw RemoteException. But defining the possible distribution cuts is a
design issue, not an implementation issue. The coding of the EJBs is reduced to the distribution and
persistence aspects, and this is what EJBs are about anyway.

Another caveat is the usage of equals() (and implicitly hashCode()). You may never use
equals() to determine the equality of two remotely accessible objects in the implementation of

Draft Draft

3

your domain classes. The objects you want to compare are not necessarily instances of the domain
classes. Due to the distributable nature of your application, either object may be the local stub of a
remote object and stubs usually do not implement equals() properly. This has the less obvious
side effect that the behavior of remotely accessible domain classes as members of sets or keys of
hash table is probably not what you would expect. Again, this is a side effect of making your applic-
ation distributable and not a drawback of our design pattern.

2.1.3. Compromises
As outlined above, we would like to keep the domain layer completely independent of the distribu-
tion and persistence mechanism without noticeable changes to a naive domain class implementation.
Others have tried this before — it's not possible. We have to make some compromises in order to be
independent of a specific persistence implementation and to support an EJB based implementation
of persistence.

2.1.3.1. Making domain classes containers

Entity EJBs are "reused" objects. I.e. if we create or load an entity bean, the corresponding Java ob-
ject is not created. Rather an existing object is taken from a pool and then "filled" with the data of
the bean created or loaded. This is not the way you think about objects in the domain, i.e. if you
design a stand-alone in-memory system.

Considering the overhead that may be associated with creating Java objects, however, it is not a bad
idea to have a pool of objects that can be reused to represent different instances. Such a container
object can have one of two states:

• It is "pooled", i.e. it exists but is currently not used to hold an instance.

• It is "ready", i.e. its state has been set to represent an instance of an application object.

The change of state is controlled by the derived class that implements the persistence. The pooled
object is notified about the change of state by calls to the following three functions:

protected void
init (...)

This method is called on a transition from the pooled state to the
ready state if the container is to be used for a newly created instance
of a domain object. If the primary key for storage is supplied by the
domain object, the corresponding persistent attribute must have been
initialized after the call to init(...). Note that refresh(...)
will still be called subsequently.

protected void re-
fresh(...) {}

This method is called on every transition from the pooled state to the
ready state. For a newly created instance of a domain object,
init(...) will have been called before refresh(...). The
implementation of this method may assume that all persistent attrib-
utes have been assigned the state that corresponds to the domain ob-
ject to be represented. The purpose of this method is to setup any at-
tributes that are not persistent but depend on persistent attributes (e.g.
cached values derived from persistent values by some calculation).

protected void
dispose() {}

This method is called on every transition from the ready state to the
pooled state. The purpose of this method is to release any resources
that depend on the domain object represented. These resources must
be reevaluated in the next call to refresh(...) anyway. So it is a
good idea to release them in the pooled state.

2.1.3.2. EJB binding

For persistence implemented using EJBs, the methods will be called as follows. init(...) is
called in ejbCreate. If the primary key is supplied by the EJB, it will be called after the primary

Draft Compromises Draft

4

key has been computed. refresh(...) is called in ejbPostCreate and in ejbLoad after all
values have been read from the database. dispose(...) is called in ejbRemove and ejbPas-
sivate.

2.1.3.3. Persistent attributes

Usually attributes of domain classes are simply attributes that have some Java type and are declared
private. This pattern cannot be maintained when persistence is implemented by a derived class as
the derived class cannot access the attributes (unless you do some nasty tricks with native methods).
Making the attributes protected is a start (though not desirable from the OO point of view). But
it is not sufficient.

The problem is that the derived class cannot track changes of the persistent attributes and thus can-
not optimize the storing of changes. There are tricks using byte-code post-processing used e.g. by
JDO. We have, however, based our solution on the approach taken by EJB 2.0 EntityBeans. (We
have not considered using EJB 2.0 EntityBeans because they have not yet been commonly available
when the project was started.)

2.1.3.3.1. Declaring persistent attributes

Persistent attributes have to be declared as virtual attributes by the domain class. To declare a virtual
attribute, you simply declare abstract getter and setter methods for the attribute. As an additional
convention, we require the methods to start with getPa and setPa, where "Pa" stands for "persist-
ent attribute", of course. So if you want to have a persistent attribute name, you declare the methods
protected abstract String getPaName(); and protected setPa-
Name(String newValue); (the project environment provides the emacs command jde-
x-gen-pers-attr for a semi-automatic template based generation).

While we would like to declare the accessor methods "private" this is, of course, not possible, so
"protected" is the next best choice. The accessor method must always be declared protected. If you
decide to make a persistent attribute publicly available, define an additional method public
String getPaName() { return super.getPaName(); }. This is why we have intro-
duced the convention to insert the "Pa": it keeps the identifier getName free for other uses.

2.1.3.3.2. Implementing virtual attributes

Basically, implementing a persistent attribute in the derived class that provides the persistence layer
is easy. You simply declare a private attribute of the desired type (as a convention, the attribute must
start with "pa", e.g. paName) and implement the getter and setter methods (the project environment
provides the emacs command jde-x-gen-impl-pers-attr for a semi-automatic template
based generation). The hard part is managing the value of the attribute.

The EntityBean-based solution calls init(...) in ejbCreate or ejbPostCreate which
should assign initial values to the persistent attributes. It uses the values assigned in the subsequent
SQL INSERT-statement. The values are also used in ejbStore for the database update. ejb-
Load assigns the values read from the database to the attributes (and calls refresh(...)).

While this is easy for simple types like int, String etc., the situation is far more complex when
complex attributes such as lists or maps are used.

2.1.3.3.3. Handling Relations

One type of complex attributes are collections of other persistent objects. These attributes describe
relations to other persistent objects. The recommended way to handle relations is to make the per-
sistent attribute read-only (i.e. do not define a setPaXXX method). The attribute is then implicitly
modified by calling an abstract factory method that creates the new persistent object and updates the
relation describing attribute at the same time.

Another abstract method destroy may then be used to remove the object and the relationship. The
method may either be a parameterless method of the created object or a method of the creating class
that takes the object to be destroyed as parameter.

Of course, this pattern can only be used for primary (containment) relations.

Draft Compromises Draft

5

2.1.3.3.4. Handling Complex Values

There are various ways to handle collections or maps with complex values that are not relations to
other persistent objects. The easiest (but not necessarily the most efficient) way is to store the values
as BLOBs in the data base.

A more efficient solution may be to implement a persistent collection or map type that tracks any
changes made to it and defines a method that updates the data base. The class
de.danet.an.util.persistentmaps.JDBCPersistentMap is an example of such a
class.

If you use such a persistence implementing class, make sure that the persistent attribute is initialized
before init(...) is called or that it is passed to init(...) as argument.

2.2. Generating XML views
Due to the usage of Cocoon for generating HTML pages, there is a frequent demand for XML rep-
resentations of "business classes" such as WfProcess or WfActivity.

Our first attempt to handle the generation of such XML representations has been to define methods
for the business objects that return an XML representation. The major drawback of this approach is
that it softens the distinction between model and view.

In information exchange, an XML representation might be considered to represent the complete
state of a model object while the associated DTD corresponds to the object's type definition (class).
In the programming environment, however, the object's type is primarily defined by its class and its
state is represented by the instance in main memory. The XML representation is mostly a particular
view of that object. The view can change as the XML format (DTD) used matures. Even worse,
there may be two or more XML representations of the same object because standard bodies or com-
panies couldn't agree on one format for a particular business domain. We have therefore decided to
consider XML a "snapshot" view of a business object.

As a consequence, XML representations are not generated by the business objects. Rather there are
static methods collected in a class called DOMGenerator [../util/DOMGenerator.html] that accept
business objects as input and return a DOM tree that represents the state of the object.

Draft Generating XML views Draft

6

../util/DOMGenerator.html
../util/DOMGenerator.html

Chapter 3. Using Cocoon
The sample web based clients provided with the workflow component are based on the cocoon [ht-
tp://jakarta.apache.org/cocoon/index.html] framework.

Cocoon provides a very good framework. As many frameworks, however, it lacks usage directives
for various application scenarios. We have established such a scenario for our front-ends. This scen-
ario is described in the next section.

In order to further ease the development of web pages and to establish certain patterns for cocoon
pages, we have provided supporting logicsheets and stylesheets. These logic- and stylesheets allow
easy exploitation of the data offered by the generated XML and the implemented query API. They
are described in the sections following the description of the front-end scenario. Note that most parts
of the library can be used independent of the front-end scenario.

3.1. A web based front-end model
Most frameworks for web based application frond-ends try to re-establish some kind of model view
controller (MVC) components as known from GUI toolkits. We do not feel that this is the best solu-
tion, as the initial situation found when using web servers, browsers and the mixtures of languages
does not provide a nicely structured environment that lends itself to such an approach.

We rather pursue a very pragmatic approach that takes the pieces we get, especially from Cocoon,
and puts them together to form something that enables us to write applications effectively. We do
not aim at providing the global solution, just something usable for WfMOpen and applications that
are structured alike.

3.1.1. Basic layout
We separate the application UI in the core pages and a decorating context. This separation can be
found in most web applications. Usually, the decorating context displays links that support naviga-
tion, i.e. the links support the selection of the currently displayed core page. But of course, the dec-
oration may also display additional information such as currently logged in users or other statistical
information.

The application sitemap and the decorating displays are considered an integration framework for
components. A component can be anything that produces only core pages and obeys the framework
rules described below. In the WfMOpen management application, the staff management WAR is
such a component. The WAR for engine management combines both a component that provides the
core pages and the integration framework for this application.

In an ideal world (or at least in an object oriented GUI framework such as Swing), the generation of
the core pages could be implemented without any knowledge about the context. Our approach
defines a specific context as follows. Core pages should assume that they are displayed as a frame
(referred to as "core content frame" subsequently) of a frameset. Any link provided by core pages
should be targeted at the frame they are displayed in (i.e. the core content frame) unless they want
the context to be changed when the link is clicked (this is further explained below). Thus if the core
page is a simple page, links should have no target specification at all. If the core page is a frameset,
the links in the HTML code displayed as frames should target _parent (if they want the next core
page to replace the frameset, not just the current frame or an explicitly targeted other frame in the
frameset).

Every link in a core page should give a hint about the context it wants to be displayed in. This in-
formation must be provided as a request parameter context-info=... of the URI (see Sec-
tion 3.3.5, “Adding a parameter to a URL” [12] for the description of a helper that adds parameters
to URIs in stylesheets). The information provided should allow the sitemap to initiate the generation
of appropriate content for the frame(s) that make up the context. Thus the values provided should
not be too fine grained (many values leading to the same frame content) nor should it be too coarse
grained (making the displayed context too unspecific). Special consideration must be given to the
context controlling values if something is designed as reusable component (e.g. the staff manage-

Draft Draft

7

http://jakarta.apache.org/cocoon/index.html
http://jakarta.apache.org/cocoon/index.html
http://jakarta.apache.org/cocoon/index.html

1Of course, decisions about what is to be displayed in the context can be based on other information derived from the URI
provided for the core content frame. But this assigns other information (besides the context-info parameter) the status of ex-
ternal interface data (from the components point of view) which must be taken into account in the further development of the
component.
2You need JavaScript to specify this as target.
3Do not forget to url-encode the request URI before using it as parameter value. In the stylesheet, you may use the helper de-
scribed in Section 3.3.4, “Encoding a link parameter” [12] for doing the encoding.
4Obviously this works only if the URI causes a complete core page to be generated. If the core page consists of a frameset
and a link targets only a frame of this frameset, then the core content frame of the newly opened window may have the proper
context, but will show only one frame from the frameset of the originating core page. To avoid this, we recommend to use
JavaScript in the href attribute of the anchors that do not target the core content frame as this usually prevents the browser
UI from offering the possibility to open the link in a new window.

ment WAR in WfMOpen), as the values provided by a ready-made component cannot be adjusted1.

Of course, the framework cannot really change the context if the link in a core page is targeted at the
core content frame. Therefore, if an application wants the context display to be updated, it must
wrap the URI in an update context request. Such a request has the form
<application-base-path>/update-context?wrapped-request="...". The re-
quest must be targeted at the parent of the core content frame. Do not use the target _top, as the ap-
plication may itself be part of an even larger display. Thus, if the core page is a simple page, links
should have the target _parent. If the core page is a frameset, the links in the HTML code dis-
played in frames should target parent.parent2 (if they want the next core page to replace the
frameset).

The sitemap of the application (in its role as framework provider) recognizes the request to display a
core content page with a new context and re-generates the frameset with the appropriate context
frames and a core content frame using the request wrapped in the parameter3.

Although the parameter context-info will normally only be used in an explicit update context
request, it should be part of any URI associated with a link on a core page. This is required due to
the possibility to open a link in a new window. In this case, the browser will display the core page
only in the new window without any context. Although this may sometimes be desirable, in general
it is not, as it contradicts the layout specified for the application above. We therefore recommend to
add JavaScript to every core page that detects its being opened without a frameset context and trig-
ger a redisplay using the request URI (or better, a specific reload URI, see below) as wrapped-
request parameter of an update context request. If this procedure is to work under all circum-
stances, every URI must include the context information4.

3.2. XSP development
3.2.1. XSP structure

While XSPs are a good starting point for XML generation, they can lead to code that is very hard to
maintain. The main topic is the gap between the Web/HTML layer and the Java layer.

We therefore follow some very strict guidelines in order to keep things properly separated and docu-
mented.

• XSPs are kept as small as possible. They make a small number of calls and simply combine the
results to the produced XML output. A typical page looks like this:

<xsp:page language="java"

Draft XSP development Draft

8

xmlns:xsp="http://apache.org/xsp"
xmlns:xsp-session="http://apache.org/xsp/session/2.0"
xmlns:xsp-request="http://apache.org/xsp/request/2.0"
xmlns:misc="http://an.danet.de/xsp/misc"
xmlns:StaffMgmt="http://an.danet.de/xsp/WfMOpen/staffmgmt"
create-session="true">

<page>
<misc:generate-mappings key="staff.member.detail">
<misc:parameter name="properties">
<StaffMgmt:I18N_PROPS/>

</misc:parameter>
</misc:generate-mappings>

<body>
<StaffMgmt:staffMemberDetail>
<misc:parameter name="staffMemberKey">
<xsp-request:get-parameter name="smk"/>

</misc:parameter>
</StaffMgmt:staffMemberDetail>

</body>
</page>

</xsp:page>

The page combines the generation of a keymap with the generation of the main XML content.

• XSPs never contain Java code. All calls to Java are mapped by a logicsheet which is usually
called library.xsl. The logicsheet uses its own namespace which should relate to the pur-
pose of the functions it provides (http://an.danet.de/xsp/WfMOpen/staffmgmt in
the example above).

The logicsheet should only contain straight forward mappings to Java methods. The tags used by
the logicsheet to provide the Java method should exactly match the name of the Java function.
Parameters should have the same names as the parameters of the Java function. Except for addi-
tional attributes like session, the function provided by the library logicsheet is thus implicitly
documented by the javadoc of the corresponding Java method.

All classes that provide methods used by the library logicsheet should be located in the same dir-
ectory as the library logicsheet.

A special logicsheet, the "misc" logicsheet is an exception to the rule because it is a builtin logic-
sheet that provides both mappings to Java code and utilities on the XSL level. The naming con-
ventions in the "misc" logicsheet therefore follow the conventions used in other Cocoon logic-
sheets. See Section 3.2.2, “Support Logicsheet” [9] for more information about the misc logic-
sheet.

• If the result produced by an XSP depends on request parameters, the mapping between the request
parameter names and the corresponding Java function parameter is made in the XSP, as shown in
the example above.

• To handle requests from a page that wants an action to be executed before the next page is dis-
played, we have developed a special action package. It is extensively documented in the javadoc
of the package de.danet.an.util.cocoon.action.

3.2.2. Support Logicsheet
The supporting logicsheet is called the "misc" logicsheet and uses the namespace ht-
tp://an.danet.de/xsp/misc for its templates. Any output generated by this logicsheet lives
in the util namespace http://an.danet.de/cocoon/util unless otherwise noted.

The functionalities of the "misc" logicsheet are split in two parts. The first part is the "real" logic-
sheet which must be registered in the cocoon configuration as

<builtin-logicsheet>

Draft Support Logicsheet Draft

9

<parameter name="prefix" value="misc"/>
<parameter name="uri" value="http://an.danet.de/xsp/misc"/>
<parameter name="href"

value="resource://de/danet/an/staffmgmt/c2client/library/misc.xsl"/>
</builtin-logicsheet>

The value of href has to be adapted appropriately, of course.

There are, however, some convenience templates that cannot be defined in the "real" logicsheet be-
cause they are used with call-template instead of matching. As Cocoon applies logicsheets one after
the other, templates from another logicsheet are not available for calling. Thus we cannot call a tem-
plate from the "misc" logicsheet in the application specific library logicsheet.

The "misc" helpers that are used with call-template are therefore collected in a file misc-
import.xsl, which — as the name suggests — should be imported in the logicsheets where you
want to use those templates.

The features provided by the "misc" logicsheet are described in the subsections following.

3.2.2.1. Setup

The misc logicsheet matches the <page> element and inserts some XML elements at the start and
the end of the <page> subtree. The XML thus generated looks like this:

...
<page xmlns:u=http://an.danet.de/cocoon/util>
<u:reload-url href="..."/>
<u:link-base-url href="...">

<!-- Any XML between <page> and </page> from the XSP -->

<u:messages>
<u:message>UI message</u:message>

</u:messages>
</page>
...

The reload URL can be used to reload the page as displayed. Its computation is described in the
javadoc of de.danet.an.util.cocoon.CocoonUtil method defaultReloadUrl. The
link base url should be used as base for all URLs generated in the target HTML code. <error>
elements are generated for all error messages added during request processing with Co-
coonUtil.addError.

3.2.2.2. <get-method-param>

Tries to find a parameter value for a Java method call first as attribute, then as child element
<misc:parameter> of the current node. See the item below for an example.

3.2.2.3. <generate-mappings>

Calls generateMappings in de.danet.an.util.cocoon.Mapping. Generates map-
pings for internationalization. The template matches XML like:

...
<misc:generate-mappings key="some.key.scope">
<misc:parameter name="properties">
some_file.properties

</misc:parameter>
</misc:generate-mappings>
...

and generates mappings for the keys thus selected. The result may e.g. look like this:

Draft Support Logicsheet Draft

10

...
<mappings xmlns="http://an.danet.de/cocoon/util">
<mapping key="addMember">Hinzufügen</mapping>
<mapping key="listCaption">Mitarbeiterübersicht</mapping>

</mappings>...

3.2.2.4. <generate-preferences>

Calls generatePreferences in de.danet.an.util.cocoon.prefs.UserPrefs.
Generates the user specific preference entries. The template matches XML like:

...
<misc:generate-preferences key="some.key.scope"/>
...

and generates preferences for the keys thus selected. The result may e.g. look like this:

...
<preferences xmlns="http://an.danet.de/cocoon/util">
<preference key="sort-info">[0name|0ascending]</preference>

</preferences>...

3.3. Global Stylesheet
The global stylesheet provides several useful templates that can support the implementation of a
page specific stylesheet.

3.3.1. General page setup
The global stylesheet includes a template that matches the root of the document to be transformed.
This template generates the HTML "frame", i.e. the <HTML>, a <HEAD> block with a title and a
link to the global stylesheet and a <BODY> with the collected errors as initial content. It then calls
xsl:apply-templates for //body and closes all tags.

3.3.2. Accessing internationalized text
The template g:get-mapping can be used to retrieve a text string for a given key.

Parameters:

key the lookup key for the mapping.

The string is taken from a list of selected mapping entries (see Section 3.2.2.3,
“<generate-mappings>” [10]) which have been generated from a mapping file
I18n_xx.properties (with "xx" being the language identifier). The language dependant file is
selected according to the current language setting of the environment.

3.3.3. Accessing user preferences
The template g:get-preference can be used to retrieve a user specific preference value for a
given key.

Parameters:

key the key to the preference entry.

Draft Global Stylesheet Draft

11

default-
Value

Optional default value which is returned, if key cannot be found within the prefer-
ence list.

The entry is taken from a list of user specific preference entries (see Section 3.2.2.4,
“<generate-preferences>” [11]) which have been retrieved from the database.

3.3.4. Encoding a link parameter
The template g:url-encode can be used to encode a string that is to be used as parameter in e.g.
the href attribute of the anchor element. Parameters in an href are encoded as key value pairs
(e.g. href="action?key1=value1&key2=value2") where the keys and values must be x-
www-form-urlencoded. This template does the encoding.

Parameters:

value the string to be encoded.

3.3.5. Adding a parameter to a URL
The template g:add-param-to-href appends the given name/value pair to a given URL. A
"?" or "&" is inserted as separator as appropriate. The template calls g:url-encode for the given
name and value before appending them.

Parameters:

href the link base URL.

name the request parameter name.

value the request parameter value.

3.3.6. Replacing a parameter within a URL
The template g:replace-param-in-href replaces the given parameter value within the given
URL. If the parameter does not exist, it will be added. The parameter syntax of this template is
identical with g:add-param-to-href (see Section 3.3.5, “Adding a parameter to a URL” [12]).

3.3.7. Generating links
There is a special template g:inline-link available for creating text or image links. Usually
this template is called by referencing a link node with an attribute hint set to inline.

Parameters:

text the link text (for text type links).

image the link image (for image type links).

Note

The image attribute has precedence against the text. If both attributes are supplied, the text
is used as additional ALT information.

target the link target window.

Draft Encoding a link parameter Draft

12

href the link destination URL. If the attribute href is not defined for the current node
but the ancestor has a link-base-url node with such an attribute and the parameter
params is set, the attribute href of the that node is used. Otherwise, the paramet-
er href of the top reload-url is used (see Section 3.2.2.1, “Setup” []) .

params additional parameters for the link. The given string is appended as is, i.e. all names
and values must be x-www-form-urlencoded.

disable flag indicating, if link is to be disabled.

3.3.8. Generating forms and fields
When creating a new form, the template g:form-setup should be called to set up some basics.
The initialization includes the setting of the action attribute with all its href parameters, creation of
the hidden fields, described by the href parameters and the setting of the accepted charset.

Parameters:

href the action URI to be taken. If the attribute href is not defined for the current node
but the ancestor has a link-base-url node with such an attribute and the parameter
params is set, the attribute href of that node is used. Otherwise, the parameter
href of the top reload-url is used (see Section 3.2.2.1, “Setup” []).

params additional parameters for the link.

Note that name/value pairs passed in href or params are converted to hidden fields. As they
come as part of a link or link parameters, they are assumed to be x-www-form-urlencoded and
will be decoded when the hidden field is created.

There are several templates for the generation of input fields. All those templates are best used for
matching a given dialog hint with a specific type. First of all, there is the template g:text-input
for generating single- or multi-row input fields as well as password fields. Usually this template is
called by referencing a dialog hint for a node that should be displayed for editing.

Example:

...
<WorkflowProcess Name="Account anlegen" type="account_neu" key="1">
<dialog-hint attribute="Name" type="text" maxlength="50"/>
<dialog-hint attribute="type" type="text"/>
<dialog-hint attribute="key" type="text"/>
</WorkflowProcess>...

Parameters:

label label text to be displayed above the input field.

size size specification for the input field.

name the name of the field. By default, this value is taken from the attribute
attribute of the node.

value default text value for the field. If this template is applied to a dialog
hint, the default value is taken from the attribute with the same name
of the parent node (see example above). If no such exists, the text
value of the node is taken.

rows number of rows to be diplayed. If the number of rows is greater than
1, a text area is created.

Draft Generating forms and fields Draft

13

type type of field. If the node has an attribute type with the value tex-
tInput, the type is set to text, otherwise it is set to password.

style reference to a css style declaration (default: inputAlignV).

attribLength input length limitation. Normally taken from attribute maxlength.

Next, the template g:choice can be used to create a selection of different values as an input. Usu-
ally this template is called by referencing a dialog hint of type choice for a node that should be
displayed for selection.

Parameters:

name the name of the field.

The selection values are thereby taken from the child nodes "option". The display values are created
by mapping these values.

3.3.9. Accessing the reload-url
For an easy access to the often needed reload-url (see Section 3.2.2.1, “Setup” []), this value
is provided in a variable called g:reload-url.

3.3.10. Creating a new sort string
A sort string, describing the current sort order for all sortable topics, is build like this:
{0topicX;0orderX}{1topicY;1orderY}... with a maximum of 10 (0 to 9) different
items supported. Each topic forms (in combination with access method used in xsl:sort; see Sec-
tion 3.4, “Sorting table columns” [18]) an expression to select the appropriate attribute (or node
value) to build the sort order. If a topic is chosen for toggling the sort order, not only the sort order
for that topic has to be switched but also the sequence of all topics is changed, setting this topic at
the first place. The task of creating such a new sort string is done by the template
g:get-new-sort-string.

Parameters:

sort-info The current sort info string.

sort-
topic

The topic that is chosen to be toggled.

url-
encode

Flag, indicating if the result sort string should be url-encoded.

3.3.11. Creating a table header entry for a sortable
column

This template g:create-sortable-header-entry can be used to create a header entry for a
sortable column in a table. This entry consists of a given header text and the appropriate sort link
image (depending on the current sort order an priority of the topic). The link performs the action of
setting the user preference value for the current sort-info with the corresponding sort string (see Sec-
tion 3.3.10, “Creating a new sort string” [14]).

Parameters:

header-
Text

The header text to be printed.

Draft Accessing the reload-url Draft

14

sort-info The current sort info string.

sort-
topic

The topic that is displayed for toggling as it is named within the sort info string.

key-
prefix

Prefix of the (generated) preference entries "sort-info". This is usually the same
prefix as used for the mapping entries.

3.3.12. Creating a tab menu
This template g:create-tab-menu can be used to create a tab menu to be placed (usually) at
the top of a window. Given information about all the entries (items) and which entry should be se-
lected, a table with a single row is created, that holds each link element of the tab menu in a separate
cell. The links call the URL provided within the item definition or reload the current URL
(reload-url) with an additional request parameter context-info, defining the current frame con-
text. The request parameter context-info should either be provided within the item's URL or
the last element of the item's key path is taken by default.

To create a tab menu, a call to this template is all that has to be done. This defines the tab entries and
the default selection.

By default, the tab marked as selected is chosen using the value of the stylesheet parameter selec-
ted-tab. If another tab entry should be selected, it can be defined as an element named
<g:selected-tab> (xmnlns:g="http://an.danet.de/cocoon/global") within
the input xml data. If both element and parameter are provided, the text value of the xml element
takes precedence. Thus, the template parameter is usually used only for initialization purpose.

Note

The mapping of the frame context to the appropriate tab selection has to be defined within
the sitemap configuration. It is good practice to create the element named
<g:selected-tab> (xmnlns:g="http://an.danet.de/cocoon/global")
within the page correspondend xsp, depending on the selected tab information provided by
the sitemap configuration.

Parameters:

items A list of all tab entries, described as a string with the following format:
"key1<,url1>;key2<,url1>;...". The key is mapped, using the map-
ping mechanism as described in Section 3.3.2, “Accessing internationalized
text” [11].

selected-
key

The key name of the current selected tab entry. If no match is found, no tab is
selected. For multiple matches, each matching tab is selected.

3.3.13. Formatting date and time
The template g:format-date-time can be used to build a formatted string for a given date and
time. Its computation is described in the javadoc of
de.danet.an.util.cocoon.CocoonUtil method formatDateTime.

3.3.14. Additional string operations
The template g:ends-with can be used to test if a given string ends with another string. This is
an extension to the XPATH 1.0 string core functions.

3.3.15. Generating drop down select box

Draft Creating a tab menu Draft

15

The template g:choice can be used to create a selection of different values as an input. This tem-
plate can be applied by referencing a dialog hint of type list for a node that should be displayed
for selection or it may be called by name.

The following is an example of how to create a select box of all activities for a given workflow pro-
cess. This select box includes an empty option and if any process child nodes of process-
summaries exists, a wildcard option will be included, too. The 'account application
issued' is as selected-text selected initially in the drop down select box.

example1.xml:

...
<process-summaries>
<dialog-hint type="list"/>
<process key="1" state="open.running.running">
<dialog-hint attribute="key" type="text" maxlength="30"/>

</process>
</process-summaries>
<WorkflowProcess Name="apply account" mgr="account_new" key="1">
...
<Activities>
<dialog-hint type="list"/>
<Activity key="1" Name="account application issued">
<dialog-hint attribute="key" type="text"/>

</Activity>
<Activity key="2" Name="account application handled">
<dialog-hint attribute="key" type="text"/>

</Activity>
</Activities>
...

</WorkflowProcess>...

example1.xsl:

...
<xsl:apply-templates select="./WorkflowProcess/Activities/dialog-hint">
<xsl:with-param name="name" select="'activityKey'"/>
<xsl:with-param name="style" select="'data'"/>
<xsl:with-param name="empty-item" select="'true'"/>
<xsl:with-param name="wildcard-item" select="//process-summaries/process"/>
<xsl:with-param name="selected-text" select="'account application issued'"/>
<xsl:with-param name="use-choice-label-template" select="'true'"/>

</xsl:apply-templates>
...

<xsl:template match="WorkflowProcess/Activities/Activity/dialog-hint"
mode="choice-label">
<xsl:value-of select="../@Name"/>

</xsl:template>
...

result: example1.html

...
<select name="activityKey" size="1" class="data">
<option value=""></option>
<option value="*">*</option>
<option selected="true" value="1">account application issued</option>
<option value="2">account application handled</option>

</select>
...

The example below shows all the ValidStates and the state of the WorkflowProcess in
drop down select box using the template g:choice.

Draft Generating drop down select box Draft

16

example2.xml:

...
<mappings xmlns="http://an.danet.de/cocoon/util">
...
<mapping key="state.open$running$running">In Bearbeitung</mapping>
...

</mappings>
...

<WorkflowProcess Name="apply account" mgr="account_new" key="1">
...
<State>
<dialog-hint type="key" maxlength="20"/>open.running.running

</State>
<ValidStates>
<dialog-hint type="list"/>
<State>

<dialog-hint type="key"/>open.not_running.suspended
</State>
<State>

<dialog-hint type="key"/>closed.terminated
</State>

</ValidStates>
...

</WorkflowProcess>...

example2.xsl:

...
<xsl:apply-templates select="./ValidStates/dialog-hint">
<xsl:with-param name="name" select="'MP8'"/>
<xsl:with-param name="style" select="'data'"/>
<xsl:with-param name="key-prefix" select="'state.'"/>
<xsl:with-param name="selected-item" select="./State"/>

</xsl:apply-templates>
...

result: example2.html

...
<select name="MP8" size="1" class="data">
<option selected="true" value="open.running.running">In Bearbeitung</option>
<option value="open.not_running.suspended">Unterbrochen</option>
<option value="closed.terminated">Beendet</option>

</select>
...

Parameters:

name The name of the select box.

style Reference to a css style declaration.

key-prefix Prefix used for the mapping entries. It is mandatory if
the dialog-hint type of this item is key and the text
value is different from its mapping entry. As shown in
example2.xml, State has the dialog-hint type of
key, its text value open.running.running is dif-
ferent from the mapping entry of
state.open$running$running. If state. is
given as the key-prefix, the mapped result is In
Bearbeitung and used as text of the option in the
select box.

Draft Generating drop down select box Draft

17

key-delim Delimiter used for tranformation of the mapping
entries, it is optional and has a default value of $. As
shown in example2.xml, the mapping entry of
state.open$running$running has $ as key-
delim.

selected-item Item to be initially selected in the drop down box, it is
optional (default: /..). Depending on the dialog-hint
type of this node (key or text), either the mapped
text value of this key or the text value of this node is
shown in the drop down box. If this node is not in-
cluded in the node of the parameter items, it is added
to the drop down box automatically.

selected-text given text to be selected in the drop down box, it is op-
tional (default: /..). If this text is not identic to the
mapped text value or text value of any node of the
parameter items, it is added to the drop down box
automatically. This parameter is an alternative to se-
lected-item. If neither selected-item nor
selected-text is given, no item is initially selec-
ted in the drop down box.

items list of nodes used to create different values in the select
box. This value is mandatory if this template
g:choice is called and optional if this template is ap-
plied. In the latter case the following nodes are selec-
ted: ../*/dialog-hint[@type='text' or
@type='key']).

use-choice-label-template flag, indicating if the choice labels of the given items
which are shown in the select box should be different
from the text values of the individual item node. If true,
then one customized template matching the dialog-hint
with mode choice-label must be created, in which
the choice label is determined, see example1.

empty-item flag indicating if an empty option in the select box
should be generated.

wildcard-item If set to a non empty node set, a wildcard option in the
select box should be generated.

Note that the template g:choice can be called or applied. The difference is applying this template
to a given node assumes this node is a dialog-hint node and has an attribute type with the value of
list, otherwise this template will not be called and as a result no select box will be rendered.

3.4. Sorting table columns
In order to make columns of a table sortable, the following steps have to be taken:

• Since sorting is performed using the user preferences (see Section 3.3.11, “Creating a table header
entry for a sortable column” [14]), make sure that
de.danet.an.util.cocoon.prefs.UserPrefs is part of the action list of the appro-
priate sitemap file.

Furthermore, generation of the preference entries has to be enabled within the appropriate xsp file
(see Section 3.2.2.4, “<generate-preferences>” [11]).

• The current sort information should be stored in a variable, using the following template:

Draft Sorting table columns Draft

18

...
<xsl:call-template name="g:get-preference">
<xsl:with-param name="key" select="'sort-info'"/>
<xsl:with-param name="defaultValue">
<xsl:value-of select="concat('{0topic;0order}', ...)"/>

</xsl:with-param>
</xsl:call-template>
...

defining a default sort order and priority for each sortable column (see Section 3.3.11, “Creating a
table header entry for a sortable column” [14]).

For each sortable table column, the column header should be build as follows:

...
<xsl:call-template name="g:create-sortable-header-entry">
...

Within the template, creating all table rows is usually performed as follows: <xsl:for-each
select="...">. For each sortable column (i.e. entry in the sort-info string), the following
xsl:sort instruction has to be added (example for selection of the declared attribute with sorting
priority "0"; for a generic approach to select the column value, xalan:evaluate may be used
instead to build the select expression):

<xsl:sort
select="@*[name()=substring-before(substring-after($sort-info,concat($g:lbrace,'0')),';')]"
order="{substring-before(substring-after($sort-info,';0'),'}')}"
data-type="text"/>

with the "0" value increased according to the descending priority of the entries.

Draft Sorting table columns Draft

19

20

Chapter 4. Implementation Guidelines
4.1. Logging

Logging is based on the logging-commons [http://jakarta.apache.org/commons/logging.html] lib-
rary.

4.1.1. General usage
Logs, i.e. instances of org.apache.commons.logging.Log MUST be defined as

private static final org.apache.commons.logging.Log logger
= org.apache.commons.logging.LogFactory.getLog(DefiningClass.class);

DefiningClass is the class that defines logger as attribute. Usage of the attribute name log-
ger for the log is mandatory.

4.1.2. Using priorities
When assigning priorities to messages, keep in mind that these messages are read and evaluated by
the system administrator.

FATAL The FATAL priority designates very severe error events that will presum-
ably lead the application to abort. Due to the archtitecture of the applica-
tion, it is hard to think of any circumstances where this situation can arise.

ERROR The ERROR priority designates error events that might still allow the ap-
plication to continue running. This priority should be used to inform the
system administrator that the program could not proceed as expected dur-
ing development, e.g. because some resource is unexpectedly not available.

WARN The WARN priority designates potentially harmful situations. This priority
should be used when the application can circumvent an unexpected situ-
ation but can't be sure if the solution found is what the user expected.

INFO The INFO priority designates informational messages that highlight the
progress of the application at coarse-grained level.

DEBUG The DEBUG priority designates fine-grained informational events that are
most useful to debug an application. Usually, debug log messages MUST
be removed from the code after successful termination of the module im-
plementation task. The necessity to remove debugging messages is not
moderated by log4j's ability to filter messages. Debug messages are often
used to find an error during implementation and amount to a lot of code
lines that make code less readable. Leaving them "just in case" thus re-
duces code quality.

There may, however, be circumstances in which certain messages can be
useful even after completion of the implementation. In those cases, debug
log messages may be left in the code. The availability of such debugging
support and the log4j category that enables it MUST be documented in
javadoc or one of the manuals.

4.1.3. Logging exceptions
Stack traces from exceptions contain valuable debug information, as the included line numbers lead

Draft Draft

21

http://jakarta.apache.org/commons/logging.html
http://jakarta.apache.org/commons/logging.html

directly to the cause of the error. Stack traces are, however, rather long and make reading the log file
difficult.

In order to avoid unnecessary stack traces in the log, we define the following rule: stack traces are
logged at the point where information from the stack trace is discarded.

This rule forbids logging in catch blocks that simply re-throw the exception, as we may assume that
the exception will be logged in the calling code (if the rule has been applied correctly):

...
} catch(SomeException sx) {

// do something
throw sx;

}

On the other hand side, the rule requires logging exceptions in catch blocks that ignore a specific ex-
ception as well as in catch blocks that create a new exception based on a caught exception:

...
} catch(SomeExceptionOne sx) {

// cannot happen because ...
logger.error (sx.getMessage(), sx); // just in case

} catch(OtherException ox) {
logger.error (ox.getMessage(), ox);
throw new SomeNewException (ox.getMessage());

}

The latter case needs further refinement. As an exceptional case, a caught exception should not be
logged if it is embedded in a newly created and thrown exception as "causing exception" and this
wrapper exception is known to output the causing exception when printed. An example for this kind
of exceptions is the javax.ejb.EJBException:

...
} catch(SomeException sx) {

// maybe do something, but do not log!
throw new EJBException (sx);

}

Of course, exceptions should not be logged if they are expected to occur in the context and indicate
a certain result:

...
} catch(ObjectNotFoundException onfe) {

// object does not exist
return false;

}

4.2. UI Messages
The messages generated in the Danet Workflow Component (UI Messages) can be logged in the
user interface. To archieve it, first of all, a session related logging context must be establisched by
calling the method setUILogContext of de.danet.an.util.cocoon.CocoonUtil.
After that, if any message needs to be logged in the user interface, calls the methods of
de.danet.an.util.cocoon.CocoonUtil (e.g. logErrorMapped), then the messages
are logged to categories handled by de.danet.an.util.log4j.ListAppender (see Sec-
tion 4.1, “Logging” [21]). In the end, the method generateMessageList of CocoonUtil
must be called to generate the XML representation of the UI messages. This XML output will be
transformed HTML using the template u:message of the global stylesheet global.xsl.

Our provided support logicsheet (see Section 3.2.2, “Support Logicsheet” [9]) offers an example
how to log UI messages.

Draft UI Messages Draft

22

4.3. Transaction Handling
While implementing EJBs, it is import to keep the semantics of transaction handling in mind. By de-
fault we use container managed transactions. This implies that the EJB container commits a transac-
tion automatically for successful completion of an EJB method. In addition the EJB container rolls
back automatically the transaction, if an exception is thrown and the exception is either of type
RuntimeException or of type RemoteException. These exceptions are of a so-called cat-
egory system exception, in opposite to the category of application exceptions.

Throwing an application exception instead requires dooming of a possibly open transaction by the
EJB itself. This is done by calling the method setRollbackOnly() of the associated EJB con-
text. Subsequently, EJBs within that transaction may check the transaction state by calling the meth-
od getRollbackOnly() of the associated EJB context.

Note that a client's perspective on transactions is by default different from the perspective taken
when implementing an EJB. An EJB acting as client of other EJBs usually has an associated trans-
action context, i.e. rolling back will undo previous calls to the same or other EJBs. A call from an
EJB client has no transaction context unless explicitly established (and it is a general recommenda-
tion not to use transaction contexts in a client). Thus every call is committed individually.

Transactions and separation of business logic
Due to the layered approach (see Section 2.1, “Separation of business logic” [3]) a method may be
fully implemented in the domain layer. It has to be kept in mind, however, that the domain layer
does not know about transaction handling. While things usually work as intended as far as system
level exceptions are concerned, special care must be taken for application exceptions.

If an application exception should cause a transaction rollback, the EJB must therefore implement a
wrapper:

public void m() {
try {

super.m();
} catch (ApplicationExceptionXYZ e) {

context.setRollbackOnly();
throw e;

}
}

As an exceptional alternative (see below), the domain level implementation may assume that the
persistence layer provides a way to reset the persistent attributes and may define an abstract method
setRollbackOnly(). This method is called whenever the domain layer interrupts execution
(i.e. throws an exception) and cannot reset already modified persistent attributes to consistent val-
ues. The domain layer should, however, reset the values itself whenever possible (or even better,
avoid modifications before doing checks that may lead to exceptions) as this is usually more effi-
cient and matches the spirit of a domain level implementation better.

When to roll back
According to the EJB specification concepts, application exception should — in general — not roll
back transactions. On the other hand side, however, a client may assume that a call to an EJB meth-
od of the workflow API does not leave the workflow engine in an inconsistent state.

As a consequence, we should roll back if any modifications have been made to data before the ap-
plication exception has been thrown. Note that application exceptions are often thrown before modi-
fications as they result from checks being made before the method is executed.

If the necessity to roll back cannot be related with an exception type, the domain level must inform
the persistence level using an abstract method as described above.

Draft Transactions and separation of busi-
ness logic

Draft

23

Caveats
Note that changing the transaction behavior of a method may have a significant impact on the work-
flow engine. EJB method implementations assume — unless other knowledge exists — that applica-
tion exceptions do not roll back transactions. Subsequent calls to EJBs' method from an EJB acting
as client are usually part of a transaction. Changing a called method's semantics such that it triggers
transaction rollback will cause the complete sequence of calls to be rolled back and thus affect the
observed behavior of the calling method.

4.4. How to write a tool
An activity can be implemented by an application program (Tool) which links to entity Workflow
Application. To write a tool, first of all, you need to define an application within the process defini-
tion in the scope of package or the dedicated process, see the following example 1.

example 1:

...
<WorkflowProcess Id="example1">
<ProcessHeader/>
<Applications>
<Application Id="MailTool">
<Description>Tool to send mail
</Description>
<FormalParameters>
<FormalParameter Id="recipient" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>
<FormalParameter Id="message" Mode="IN">
<DataType>
<BasicType Type="STRING"/>

</DataType>
</FormalParameter>

</FormalParameters>
<ExtendedAttributes>
<ExtendedAttribute Name="Implementation">
<vx:ToolAgent Class="de.danet.an.workflow.tools.MailTool">
<vx:Property Name="DefaultSender">anyone@abc.com</vx:Property>

</vx:ToolAgent>
</ExtendedAttribute>

</ExtendedAttributes>
</Application>
</Applications>

<DataFields>
<DataField Id="recipient" IsArray="FALSE">
<DataType>
<BasicType Type="STRING"/>
</DataType>

<InitialValue>mao@danet.de</InitialValue>
<Description/>

</DataField>
<DataField Id="message" IsArray="FALSE">
<DataType>
<BasicType Type="STRING"/>
</DataType>

<InitialValue>account setted up</InitialValue>
<Description/>

</DataField>
</DataFields>

...
<Activities>
<Activity Id="feedback" Name="account request feedback">
<Implementation>
<Tool Id="MailTool">

Draft How to write a tool Draft

24

<ActualParameters>
<ActualParameter>recipient</ActualParameter>
<ActualParameter>message</ActualParameter>

</ActualParameters>
</Tool>

</Implementation>
...

</Activity>
...

</Activities>
</WorkflowProcess>
...

An application has parameters named FormalParameters, differed by their Id, Mode and DataType;
Mode indicates if the parameter is input- or output-parameter for this application. The implementa-
tion class of an application is declared in an ExtendedAttribute named Implmentation as
vx:ToolAgent. It can have properties for which a set method is to be implemented in the class.
Next you can refer the defined application in the dedicated activity, see the example 1 above. To call
the application the parameters named ActualParameters are to be defined. They must match the
FormalParameters of the application definition in the correct order. The values of ActualParameters
must not be identical with the Id of the FormalParameters, but a corresponding DataField identified
by its Id must be defined in the process definition. After you have defined the process definition,
you need to implement the class which is declared in the vx:ToolAgent. This class must imple-
ment the interfaces java.lang.Serializable and
de.danet.an.workflow.spis.aii.ToolAgent which defines two methods: invoke
and terminate. In the invoke method the work is performed, the process data is updated with
the result of the work and then the doFinish method of the WorkflowEngine is called with the
given activity and the upated process data. The work can be terminated in the method of termin-
ate. See the following example 2.

Note

Please do not attempt to perform any method on the activity except key and uniqueKey
before doing the work; otherwiese, the activity becomes part of the EJB transaction and is
locked, i.e. all accesses (even display in the management client) are deferred until the work
is performed completely.

example 2:

...
public void invoke(Activity activity, FormalParameter[] formPars,

Map map) {
WorkflowEngine wfe = (WorkflowEngine)EJBUtil.createSession
(WorkflowEngineHome.class, "java:comp/env/ejb/WorkflowEngine");

wfe.doFinish (activity, sendMail());
}

private ProcessData sendMail () {
// do sending mail
Session mailSession = (Session) EJBUtil.lookupJNDIEntry

("java:comp/env/mail/WfEngine");
// create a message
Message msg = new MimeMessage(mailSession);
...
// send the message
Transport.send(msg);
// build return value
ProcessData resData = new DefaultProcessData();
if (status != null) {

resData.put (status, "OK");
}
return resData;

}
...

Draft How to write a tool Draft

25

Draft How to write a tool Draft

26

Chapter 5. Documentation
...

Draft Draft

27

28

Chapter 6. Tips & Tricks
6.1. Testing stylesheet layout

While developing stylesheet files, it is often useful to test the correct behaviour of the new code
without the need to deploy the application. To achive this, the first step is to create a file with the
raw input data for the stylesheet which can be done by calling ht-
tp://localhost:8080/workflow/action?debug=raw&... instead of ht-
tp://localhost:8080/workflow/action?... (parameters as needed for the URL to be
tested). By using this target, the raw data, created by the XSP is sent as the response and you can
save this file for later use.

Retrieving the action URL

To achive a proper layout for every invoked link (which may in fact only lead to a part of a
frame), all action URLs are relocated to display URLs (with an enhanced parameter
list). Thus, to retrieve the needed action URL, copy the link location within your
browser (before activating it) and paste the value to the new browser window. Then edit
this URL as described above.

Next, you use the data file, created above to test the stylesheet code by calling ant with the target
stylesheet-test in the client directory of you context (e.g.
...workflow/clients/c2client). The parameters of this call are -Dsrc=<PATH TO
RAW DATA FILE> -Dstylesheet=<STYLESHEET FILENAME WITHOUT PATH>. What
you get is the result of the stylesheet processing as a file
...build/stylesheet-test/out.html that can loaded with any browser.

Draft Draft

29

30

Index
G
g:add-param-to-href, 12
g:choice, 14, 16
g:create-sortable-header-entry , 14
g:create-tab-menu , 15
g:ends-with, 15
g:format-date-time, 15
g:form-setup, 13
g:get-mapping, 11
g:get-new-sort-string, 14
g:get-preference, 11
g:inline-link, 12
g:reload-url, 14
g:replace-param-in-href, 12
g:text-input, 13
g:url-encode, 12

Draft Draft

31

32

	The Danet Workflow Component
	Table of Contents
	Introduction
	Chapter 1. Development Environment
	1.1. Personal Properties
	1.2. Building
	1.3. JBoss

	Chapter 2. Design Patterns and Practices
	2.1. Separation of business logic
	2.1.1. Introduction
	2.1.2. Our approach
	2.1.3. Compromises
	2.1.3.1. Making domain classes containers
	2.1.3.2. EJB binding
	2.1.3.3. Persistent attributes
	2.1.3.3.1. Declaring persistent attributes
	2.1.3.3.2. Implementing virtual attributes
	2.1.3.3.3. Handling Relations
	2.1.3.3.4. Handling Complex Values

	2.2. Generating XML views

	Chapter 3. Using Cocoon
	3.1. A web based front-end model
	3.1.1. Basic layout

	3.2. XSP development
	3.2.1. XSP structure
	3.2.2. Support Logicsheet
	3.2.2.1. Setup
	3.2.2.2. <get-method-param>
	3.2.2.3. <generate-mappings>
	3.2.2.4. <generate-preferences>

	3.3. Global Stylesheet
	3.3.1. General page setup
	3.3.2. Accessing internationalized text
	3.3.3. Accessing user preferences
	3.3.4. Encoding a link parameter
	3.3.5. Adding a parameter to a URL
	3.3.6. Replacing a parameter within a URL
	3.3.7. Generating links
	3.3.8. Generating forms and fields
	3.3.9. Accessing the reload-url
	3.3.10. Creating a new sort string
	3.3.11. Creating a table header entry for a sortable column
	3.3.12. Creating a tab menu
	3.3.13. Formatting date and time
	3.3.14. Additional string operations
	3.3.15. Generating drop down select box

	3.4. Sorting table columns

	Chapter 4. Implementation Guidelines
	4.1. Logging
	4.1.1. General usage
	4.1.2. Using priorities
	4.1.3. Logging exceptions

	4.2. UI Messages
	4.3. Transaction Handling
	4.4. How to write a tool

	Chapter 5. Documentation
	Chapter 6. Tips & Tricks
	6.1. Testing stylesheet layout

	Index

