The Danet Workflow Component

Maintenance Guide

Dr. Michael Lipp, Danet GmbH
Dr. Christian Weidauer, Danet GmbH
Holger Schliter, Danet GmbH
Horst-Glunther Barzik, Danet GmbH

For version 2.1.2

Draft

Draft

The Danet Workflow Component: Maintenance Guide
by Dr. Michael Lipp, Dr. Christian Weidauer, Holger Schliter, and Horst-Gunther Barzik
Copyright © 2003 Danet GmbH

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Genera Public License
for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Soft-
ware Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Draft Draft

Draft

Draft

Table of Contents

INEFOTUCTION ...t e et e e e et e b e e e e e e ennreanas Vil
1. Development ENVIFONMENToouuiiii e e e e e e e e e e e e e e e e eanaas 1
1.1, Personal Propertiesieeeuee it 1

L2 BUIAING oot 1

T | o ST UPTPPRN 1

2. Design PatterNS @and PraCtiCeSiuu i 3
2.1. Separation of BUSINESSIOQIC ...cvvuiiiiiiiiee e 3

212 INFOAUCTION ...t eeeeeenes 3

2.1.2.0Ur approaChoouuiiii 3

2.1.3. COMPIOMISESetitieeeeeti e ettt e ettt e ettt e et e et et e e b eeenea s 4

2.2. Generating XIML VIBWS ...oouuiiiiiiiiieicit et e 6

T U LS 7o @ ol e o o KPP 7
3.1. A web based front-end modeloveiiiiiiiii s 7
311 BaSiClayOULceeeciiii e 7

3.2, XSSP ABVEIOPMENT ...eeveeeeiii e 8

.21 XSSP SIUCLUIE ...ttt e e e e e e ees 8

3.2.2. SUPPOIt LOGICSNEELcceiie i 9

3.3. Global StYIESNEELceeeviiiiii e 11
3.3.1. General PAJE SEIUDvuieineiieeei e ee e e e e e e 11

3.3.2. Accessing internationalized textccevviviiii i, 11

3.3.3. ACCESSING USEr PreEfEreNCES ...ovvvniiiiii et 11

3.3.4. Encoding alink parameterccouiiiiiiiiiiiiiii e 12

3.3.5. Adding aparameter t0 AURLccuuieiiiiiiiiiiiiieee e 12

3.3.6. Replacing aparameter within aURLcooiiiiiiiiiiiieeen, 12
3.3.7.Generating liNKSc.uiiiiiiii e 12

3.3.8. Generating formsand fieldscoeveiiiiiiii 13

3.3.9. Accessing the reload-urlcoovviiiiiii e 14

3.3.10. Creating anew SO SEHNG ...ccvvuiieeiieeeei et 14

3.3.11. Cresating atable header entry for a sortable columneeeee. 14

3.3.12. Creating atad MENUc.uiii i 15

3.3.13. Formatting date and timeccoeviuiiiiiiiiiiie e 15

3.3.14. Additional String OPErationsc..vevuuiieeueeeiieeriieeeiiee e eeieeeenas 15

3.3.15. Generating drop down Select DOXcoovviiiiiiiiiiiii 15

3.4, Sorting table COIUMNSccveiiieei e 18

4. Implementation GUIJEIINESuuuiiiiii e 21
I oo (o1 o TP 21
I I 1= 1 T o S 21

R B L= T o I o o] 1= 21

4.1.3. LOgQiNg EXCEPLIONS ...ceeveneeiiiiee ettt 21

4.2 UL MESSEIESeevieeeie ettt ettt ettt 22

4.3. Transaction Handlingooeieiiieiii e 23

4.4, HOW tO WHTE ATOO0Iccivriiiiiiii et 24

5. DOCUMENEALION ...ttt ettt e ettt e e e e e e e e e rbbb e e e e e e 27
L TS I oG 29
6.1. Testing Stylesheet [aYOULcouuiiiiii e 29
o P 31

Vi

Draft Draft

Introduction

Since thisis the manual for developers, it refers to the user APl as well as to the internal API of the
workflow engine. The JavaDoc of the internal API is not in the binary distribution, because it is rel-
evant to developers of the engine itself only. You can generate the documentation by running "ant
doc" in the $DI ST/ sr ¢ subdirectory of the source distribution. You can then start browsing the
JavaDoc with $DI ST/ di st / doc/ wor kf | ow/ api /i ndex. ht m .

i

viii

Draft

Draft

Chapter 1. Development Environment

1.1. Personal Properties

For compilation the file "ant . properti es" hasto be created in directory " W MOpen/ per -

sonal - props". This file contains settings for your persona development environment. To find
out which properties have to be set or adapted, look at the file "W MOpen/ con-

fig-props/ant. properties" which contains defaults (if there are reasonable defaults) or
hints about what you have to define in your personal propertiesfile. Note that thefilein" W MOpen/
confi g- props" isunder CVS control and likely to change from release to release, while the file
in" W MOpen/ per sonal - props" isnot and will retain its contents even when you update (the
message hereis: don't change " W MOpen/ conf i g- props/ ant . properti es" unlessyou are
modifying the build system or have to introduce some new developer dependant property - if you
just want to get things running, make changes to "W MOpen/person-

al - props/ ant . properties").

To log debug infformation from the application the file config-
props/ | og4j - appl . properti es has to be copied to directory "W MOpen/ per son-
al - props" and can be adapted to your needs. Please note that the appender " ui - nessages”
and the category " ui " must not be removed. Otherwise the WebClient user will not get feedback
(errors, warnings, info) anymore.

Compilation will fail if there is no oracle driver. The Oracle JDBC driver requires strange handling
of BLOBS (they should have put sequence diagrams in the JDBC specification). We have provided a
wrapper that allows transparent handling of BLOBs for al types of databases. In order to compile
this, however, you need some proprietary classes from the oracle driver. As Oracle does not permit
the redistribution of its JDBC driver, you will have to get one yourself.

The driver must be renamed to or acl e-*- JDBC-*. j ar (cl asses12. zi p redly isn'tit), eg.
oracl e-8.1.7-JDBC-t hi n-JDK1. 2. x. j ar,and putinthet ool s directory.

1.2. Building

After setting your persona properties, you can build WfMOpen by invoking "ant" in the directory
W MOpen/ src.

Useful targets are:

ear Builds the ear (and al libraries needed to assemble the ear). The results are created
in W MOpen/ di st/ ... usingthe samelayout asthe binary distribution.

depl oy Builds the ear and deploys it in a running JBoss. The deployment is "temporary",
i.e. the ear is not copied to JBoss, so after restarting JBoss, you have to deploy
again.

di st Builds everything in W MOpen/ di st/

1.3. JBosSs

Since newer versions of the packages or g. w3c. dom or g. xnl . sax, org. xn . sax. ext and
org. xm . sax. hel per s are used the Endorsed Standards Override Mechanism of the JDK [ht-
tp://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html] starting JBoss needs to be supported.
Therefore the system property j ava. endorsed. dirs needs to be set to the directory
$DI ST/ t ool s/ endor sed.

Furthermore, it might be necessary to define a proxy for your http connection. To provide this in-

http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/standards/index.html

Draft

JBoss Draft

formation to the java virtual machine start JBoss as follows (see "J2SDK Networking Properties’
[http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html]):

JAVA _OPTS="- Dj ava. endor sed. di r s=$DI ST/ t ool s/ endor sed -
Dpr oxySet =t r ue - Dht t p. pr oxyHost =<PROXY HOST> - Dht -
t p. proxyPor t =<PORT>" ./run. sh

Apart from the JBoss installation specific settings (see Section 1.1, “Personal Properties’ [1]) an ad-
ditional security service has to be installed. Therefore the content of file "W MOpen/
src/ de/ danet/ an/ wor kf |l ow/ r esour ces/ | ogi n-conf.xm .insert" needs to be
inserted in file " $IJBOSS_HOWE/ server/ def aul t/ conf /| ogi n-confi g.xm " in front
of the closing </ pol i cy> tag.

http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html
http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html

Draft

Draft

Chapter 2. Design Patterns and
Practices

2.1. Separation of business logic

2.1.1.

2.1.2.

Introduction

If you use EJBs as base components for your system, you soon find that the source code file be-
comes rather long. The reason is that an EJB has to handle at least three tasks:

 provide the distribution logic (roughly everything related to the home interface)
* provide persistence

* implement businesslogic

One way to reduce the amount of code assembled in EJBs has traditionally been to separate the per-
sistence related aspectsin a DAO (Data Access Object). This pattern has the additional advantage of
allowing the persistence mechanism to be exchanged without modifying the code of the EJB. The
implementation of our workflow components, however, uses a different approach.

Our approach

If you design a system that is not distributed, you usually start with the implementation of your do-
main classes. While they may not exactly match the classes you used during analysis, they are usu-
ally quite close which keeps the learning curve low for new team members. So, why not stick to that
approach and put the domain classes in the center of the design, using EJBs only to add a distribu-
tion and persistence mechanism to the domain classes.

According to this approach, you will find the following package pattern in our design:

...domain Defines the domain classes with an i nt er f ace Domai nCl ass
. and provides an incomplete implementation as cl ass Ab-
stract Donai nCl ass (Sometimes it is possible to imple-
ment the class completely. In these cases the class is named cl ass
Def aul t Domai nCl ass....) The abstract implementation
provides al business logic that is independent of a particular distribu-
tion and persistence mechanism. Classes in the domain package ref-
erence each other using the interface only.

... €ej bs[.subpkg] Provides the implementation of distribution and persistence for the
domain classes using EJBs. The EJBs remote interfaces extend the
corresponding domain interfaces and the EJBs extend the abstract do-
main classes.

This pattern has the advantage of clearly separating business logic from the distribution and persist-
ence implementation. Y ou could perfectly well reuse the abstract classes from the domain package
for e.g. aJNI based implementation. Of course, you have to declare that the methods defined in the
domain interfaces throw Renot eExcepti on. But defining the possible distribution cuts is a
design issue, not an implementation issue. The coding of the EJBs is reduced to the distribution and
persistence aspects, and thisis what EJBs are about anyway.

Another caveat is the usage of equal s() (and implicitly hashCode()). You may never use
equal s() to determine the equality of two remotely accessible objects in the implementation of

3

Draft Compromises Draft

your domain classes. The objects you want to compare are not necessarily instances of the domain
classes. Due to the distributable nature of your application, either object may be the local stub of a
remote object and stubs usually do not implement equal s() properly. This has the less obvious
side effect that the behavior of remotely accessible domain classes as members of sets or keys of
hash table is probably not what you would expect. Again, thisis a side effect of making your applic-
ation distributable and not a drawback of our design pattern.

2.1.3. Compromises

As outlined above, we would like to keep the domain layer completely independent of the distribu-
tion and persistence mechanism without noticeable changes to a naive domain class implementation.
Others have tried this before — it's not possible. We have to make some compromises in order to be
independent of a specific persistence implementation and to support an EJB based implementation
of persistence.

2.1.3.1. Making domain classes containers

Entity EJBs are "reused" objects. |.e. if we create or load an entity bean, the corresponding Java ob-
ject is not created. Rather an existing object is taken from a pool and then "filled" with the data of
the bean created or loaded. This is not the way you think about objects in the domain, i.e. if you
design a stand-alone in-memory system.

Considering the overhead that may be associated with creating Java objects, however, it is not a bad
idea to have a pool of objects that can be reused to represent different instances. Such a container
object can have one of two states:

* Itis"pooled", i.e. it exists but is currently not used to hold an instance.

e Itis"ready", i.e. its state has been set to represent an instance of an application object.

The change of state is controlled by the derived class that implements the persistence. The pooled
object is notified about the change of state by calls to the following three functions:

protected void This method is called on a transition from the pooled state to the

init (...) ready state if the container is to be used for a newly created instance
of a domain object. If the primary key for storage is supplied by the
domain object, the corresponding persistent attribute must have been
initialized after thecall toinit(...).Notethatrefresh(...)
will still be called subsequently.

protected void re- Thismethod is called on every transition from the pooled state to the

fresh(...) {} ready state. For a newly created instance of a domain object,
init(...) will have been called before refresh(...). The
implementation of this method may assume that all persistent attrib-
utes have been assigned the state that corresponds to the domain ob-
ject to be represented. The purpose of this method is to setup any at-
tributes that are not persistent but depend on persistent attributes (e.g.
cached values derived from persistent values by some calculation).

protected void This method is called on every transition from the ready state to the

di spose() {} pooled state. The purpose of this method is to release any resources
that depend on the domain object represented. These resources must
bereevaluated inthenext call tor ef resh(...) anyway. Soitisa
good ideato release them in the pooled state.

2.1.3.2. EJB binding

For persistence implemented using EJBs, the methods will be called as follows. i nit(...) is
caledin ej bCr eat e. If the primary key is supplied by the EJB, it will be called after the primary

Draft Compromises Draft

key has been computed. r ef resh(...) iscaledinej bPost Cr eat e andin ej bLoad after all
values have been read from the database. di spose(. ..) iscaledinej bRenove and ej bPas-
sivate.

2.1.3.3. Persistent attributes

Usually attributes of domain classes are simply attributes that have some Java type and are declared
pri vat e. This pattern cannot be maintained when persistence isimplemented by a derived class as
the derived class cannot access the attributes (unless you do some nasty tricks with native methods).
Making the attributes pr ot ect ed is a start (though not desirable from the OO point of view). But
it isnot sufficient.

The problem is that the derived class cannot track changes of the persistent attributes and thus can-
not optimize the storing of changes. There are tricks using byte-code post-processing used e.g. by
JDO. We have, however, based our solution on the approach taken by EJB 2.0 EntityBeans. (We
have not considered using EJB 2.0 EntityBeans because they have not yet been commonly available
when the project was started.)

2.1.3.3.1. Declaring persistent attributes

Persistent attributes have to be declared as virtual attributes by the domain class. To declare avirtual
attribute, you simply declare abstract getter and setter methods for the attribute. As an additional
convention, we require the methods to start with get Pa and set Pa, where "Pa’ stands for "persist-
ent attribute”, of course. So if you want to have a persistent attribute nane, you declare the methods
protected abstract String getPaNane(); and protected setPa-

Nanme(String newval ue); (the project environment provides the emacs command j de-

X-gen- per s-attr for asemi-automatic template based generation).

While we would like to declare the accessor methods "private" this is, of course, not possible, so
"protected” is the next best choice. The accessor method must always be declared protected. If you
decide to make a persistent attribute publicly available, define an additiona method publ i c
String getPaNane() { return super.getPaNanme(); }.Thisiswhy we haveintro-
duced the convention to insert the "Pa": it keeps the identifier get Nare free for other uses.

2.1.3.3.2. Implementing virtual attributes

Basically, implementing a persistent attribute in the derived class that provides the persistence layer
iseasy. You simply declare a private attribute of the desired type (as a convention, the attribute must
start with "pa’, e.g. paNane) and implement the getter and setter methods (the project environment
provides the emacs command j de- x- gen-i npl - pers-attr for a semi-automatic template
based generation). The hard part is managing the value of the attribute.

The EntityBean-based solution callsinit(...) in ej bCreate or ej bPost Creat e which
should assign initial values to the persistent attributes. It uses the values assigned in the subsequent
SQL INSERT-statement. The values are also used in ej bSt or e for the database update. e b-
Load assigns the values read from the database to the attributes (and callsr ef resh(...)).

While thisis easy for simple typeslikei nt, St ri ng etc., the situation is far more complex when
complex attributes such as lists or maps are used.

2.1.3.3.3. Handling Relations

One type of complex attributes are collections of other persistent objects. These attributes describe
relations to other persistent objects. The recommended way to handle relations is to make the per-
sistent attribute read-only (i.e. do not define a set PaXXX method). The attribute is then implicitly
modified by calling an abstract factory method that creates the new persistent object and updates the
relation describing attribute at the same time.

Another abstract method dest r oy may then be used to remove the object and the relationship. The
method may either be a parameterless method of the created object or a method of the creating class
that takes the object to be destroyed as parameter.

Of course, this pattern can only be used for primary (containment) relations.

Draft Generating XML views Draft

2.1.3.3.4. Handling Complex Values

There are various ways to handle collections or maps with complex values that are not relations to
other persistent objects. The easiest (but not necessarily the most efficient) way isto store the values
as BLOBsin the data base.

A more efficient solution may be to implement a persistent collection or map type that tracks any
changes made to it and defines a method that updates the data base. The class
de. danet. an. util. persi st ent maps. JDBCPer si st ent Map is an example of such a
class.

If you use such a persistence implementing class, make sure that the persistent attribute is initialized
beforeinit(...) iscaledorthatitispassedtoi nit(...) asargument.

2.2. Generating XML views

Due to the usage of Cocoon for generating HTML pages, there is a frequent demand for XML rep-
resentations of "business classes’ such asW Pr ocess or W Acti vity.

Our first attempt to handle the generation of such XML representations has been to define methods
for the business objects that return an XML representation. The major drawback of this approach is
that it softens the distinction between model and view.

In information exchange, an XML representation might be considered to represent the complete
state of a model object while the associated DTD corresponds to the object's type definition (class).
In the programming environment, however, the object's type is primarily defined by its class and its
state is represented by the instance in main memory. The XML representation is mostly a particular
view of that object. The view can change as the XML format (DTD) used matures. Even worse,
there may be two or more XML representations of the same object because standard bodies or com-
panies couldn't agree on one format for a particular business domain. We have therefore decided to
consider XML a"snapshot" view of abusiness object.

As a consequence, XML representations are not generated by the business objects. Rather there are
static methods collected in a class called DOMGener at or [../util/DOM Generator.html] that accept
business objects asinput and return aDOM tree that represents the state of the object.

../util/DOMGenerator.html
../util/DOMGenerator.html

Draft

Draft

Chapter 3. Using Cocoon

The sample web based clients provided with the workflow component are based on the cocoon [ht-
tp://jakarta.apache.org/cocoon/index.html] framework.

Cocoon provides a very good framework. As many frameworks, however, it lacks usage directives
for various application scenarios. We have established such a scenario for our front-ends. This scen-
ario is described in the next section.

In order to further ease the development of web pages and to establish certain patterns for cocoon
pages, we have provided supporting logicsheets and stylesheets. These logic- and stylesheets allow
easy exploitation of the data offered by the generated XML and the implemented query API. They
are described in the sections following the description of the front-end scenario. Note that most parts
of the library can be used independent of the front-end scenario.

3.1. A web based front-end model

3.1.1.

Most frameworks for web based application frond-ends try to re-establish some kind of model view
controller (MVC) components as known from GUI toolkits. We do not feel that thisis the best solu-
tion, as the initial situation found when using web servers, browsers and the mixtures of languages
does not provide anicely structured environment that lends itself to such an approach.

We rather pursue a very pragmatic approach that takes the pieces we get, especialy from Cocoon,
and puts them together to form something that enables us to write applications effectively. We do
not aim at providing the global solution, just something usable for WfMOpen and applications that
are structured alike.

Basic layout

We separate the application Ul in the core pages and a decorating context. This separation can be
found in most web applications. Usually, the decorating context displays links that support naviga-
tion, i.e. the links support the selection of the currently displayed core page. But of course, the dec-
oration may also display additional information such as currently logged in users or other statistical
information.

The application sitemap and the decorating displays are considered an integration framework for
components. A component can be anything that produces only core pages and obeys the framework
rules described below. In the WfMOpen management application, the staff management WAR is
such a component. The WAR for engine management combines both a component that provides the
core pages and the integration framework for this application.

In an ideal world (or at least in an object oriented GUI framework such as Swing), the generation of
the core pages could be implemented without any knowledge about the context. Our approach
defines a specific context as follows. Core pages should assume that they are displayed as a frame
(referred to as "core content frame" subsequently) of a frameset. Any link provided by core pages
should be targeted at the frame they are displayed in (i.e. the core content frame) unless they want
the context to be changed when the link is clicked (thisis further explained below). Thusiif the core
page is a simple page, links should have no target specification at all. If the core page is a frameset,
the links in the HTML code displayed as frames should target _par ent (if they want the next core
page to replace the frameset, not just the current frame or an explicitly targeted other frame in the
frameset).

Every link in a core page should give a hint about the context it wants to be displayed in. This in-
formation must be provided as a request parameter cont ext -i nf o=. .. of the URI (see Sec-
tion 3.3.5, “Adding a parameter to a URL" [12] for the description of a helper that adds parameters
to URIsin stylesheets). The information provided should alow the sitemap to initiate the generation
of appropriate content for the frame(s) that make up the context. Thus the values provided should
not be too fine grained (many values leading to the same frame content) nor should it be too coarse
grained (making the displayed context too unspecific). Special consideration must be given to the
context controlling values if something is designed as reusable component (e.g. the staff manage-

7

http://jakarta.apache.org/cocoon/index.html
http://jakarta.apache.org/cocoon/index.html
http://jakarta.apache.org/cocoon/index.html

Draft

XSP development Draft

ment WAR in WfMOpen), as the values provided by a ready-made component cannot be adj usted?.

Of course, the framework cannot really change the context if the link in a core page istargeted at the
core content frame. Therefore, if an application wants the context display to be updated, it must
wrap the URI in an wupdate context request. Such a request has the form
<appl i cati on- base- pat h>/ updat e- cont ext ?wr apped-request="...". The re
guest must be targeted at the parent of the core content frame. Do not use the target _t op, asthe ap-
plication may itself be part of an even larger display Thus, if the core page is a simple page, links
should have the target _par ent . If the core page is a frameset, the links in the HTML code dis-
played in frames should target par ent . par ent (|f they want the next core page to replace the
frameset).

The sitemap of the application (in its role as framework provider) recognizes the request to display a
core content page with a new context and re-generates the frameset with the appropriate context
frames and a core content frame using the request wrapped in the parameter®.

Although the parameter cont ext - i nf o will normally only be used in an explicit update context
request, it should be part of any URI associated with a link on a core page. Thisis required due to
the possibility to open alink in a new window. In this case, the browser will display the core page
only in the new window without any context. Although this may sometimes be desirable, in general
it isnot, as it contradicts the layout specified for the application above. We therefore recommend to
add JavaScript to every core page that detects its being opened without a frameset context and trig-
ger aredisplay using the request URI (or better, a specific reload URI, see below) as wr apped-
request parameter of an update context request. If th|s procedure is to work under all circum-
stances, every URI must include the context information®.

3.2. XSP development
3.2.1. XSP structure

While XSPs are a good starting point for XML generation, they can lead to code that is very hard to
maintain. The main topic is the gap between the Web/HTML layer and the Java layer.

We therefore follow some very strict guidelinesin order to keep things properly separated and docu-
mented.
» XSPs are kept as small as possible. They make a small number of calls and smply combine the

results to the produced XML output. A typical page looks like this:

<xsp: page | anguage="j ava"

TOf course, decisions about what is to be displayed in the context can be based on other information derived from the URI
provided for the core content frame. But this assigns other information (besides the context-info parameter) the status of ex-
ternal interface data (from the components point of view) which must be taken into account in the further development of the
component

You need JavaScript to specify this as target.

3Do not forget to url-encode the request URI before using it as parameter value. In the stylesheet, you may use the helper de-
scribed in Section 3.3.4, “Encoding alink parameter” [12] for doing the encoding.
4ObV|0ust this works only if the URI causes a complete core page to be generated. If the core page consists of a frameset
and alink targets only aframe of this frameset, then the core content frame of the newly opened window may have the proper
context, but will show only one frame from the frameset of the originating core page. To avoid this, we recommend to use
JavaScript in the hr ef attribute of the anchors that do not target the core content frame as this usually prevents the browser
Ul from offering the possibility to open the link in a new window.

Draft

3.2.2.

Support Logicsheet Draft

xm ns: xsp="http://apache. or g/ xsp"
xm ns: xsp-session="http://apache. org/ xsp/ sessi on/ 2. 0"
xm ns: xsp-request="http://apache. org/ xsp/ request/ 2. 0"
xm ns: m sc="http://an. danet. de/ xsp/ m sc"
xm ns: Staf f Mgmt =" htt p: // an. danet . de/ xsp/ W MOpen/ st af f ngnt "
creat e-sessi on="true">
<page>
<m sc: gener at e- mappi ngs key="staff. nenber. detail ">
<m sc: par anet er nane="properties">
<StaffMnt: | 18N_PROPS/ >
</ m sc: par anet er >
</ m sc: gener at e- mappi ngs>

<body>
<St af f Mgnt : st af f Menber Det ai | >
<m sc: par anet er nanme="st af f Menber Key" >
<Xsp-request: get - paranet er nanme="snk"/>
</ m sc: par anet er >
</ St af f Mgnt : st af f Menber Det ai | >
</ body>
</ page>
</ xsp: page>

The page combines the generation of a keymap with the generation of the main XML content.

* XSPs never contain Java code. All calls to Java are mapped by a logicsheet which is usualy
caled I i brary. xsl . The logicsheet uses its own namespace which should relate to the pur-
pose of the functions it provides (htt p: // an. danet . de/ xsp/ W MOpen/ st af f ngnt in
the example above).

The logicsheet should only contain straight forward mappings to Java methods. The tags used by
the logicsheet to provide the Java method should exactly match the name of the Java function.
Parameters should have the same names as the parameters of the Java function. Except for addi-
tional attributes like sessi on, the function provided by the library logicsheet is thus implicitly
documented by the javadoc of the corresponding Java method.

All classes that provide methods used by the library logicsheet should be located in the same dir-
ectory asthe library logicsheet.

A special logicsheet, the "misc" logicsheet is an exception to the rule because it is a builtin logic-
sheet that provides both mappings to Java code and utilities on the XSL level. The naming con-
ventions in the "misc" logicsheet therefore follow the conventions used in other Cocoon logic-
sheets. See Section 3.2.2, “Support Logicsheet” [9] for more information about the misc logic-
sheet.

« If the result produced by an X SP depends on request parameters, the mapping between the request
parameter names and the corresponding Java function parameter is made in the XSP, as shown in
the example above.

» To handle requests from a page that wants an action to be executed before the next page is dis-

played, we have developed a specia action package. It is extensively documented in the javadoc
of the packagede. danet . an. uti | . cocoon. acti on.

Support Logicsheet

The supporting logicsheet is caled the "misc" logicsheet and uses the namespace ht -
tp:// an. danet . de/ xsp/ m sc for itstemplates. Any output generated by this logicsheet lives
intheut i | namespacehtt p:// an. danet . de/ cocoon/ uti | unless otherwise noted.

The functionalities of the "misc" logicsheet are split in two parts. The first part is the "real" logic-
sheet which must be registered in the cocoon configuration as

<bui I ti n-1ogi csheet >

Draft

Support Logicsheet Draft

<par anet er nanme="prefix" value="m sc"/>
<paraneter nanme="uri" value="http://an.danet.de/ xsp/ m sc"/>
<par anet er nane="href"

val ue="resource://de/ danet/an/staffngnt/c2client/library/ msc.xsl"/>

</ builtin-Iogicsheet>
Thevalue of hr ef hasto be adapted appropriately, of course.

There are, however, some convenience templates that cannot be defined in the "real" logicsheet be-
cause they are used with call-template instead of matching. As Cocoon applies logicsheets one after
the other, templates from another logicsheet are not available for calling. Thus we cannot call atem-
plate from the "misc” logicsheet in the application specific library logicsheet.

The "misc" helpers that are used with cal | - t enpl at e are therefore collected in a file i sc-
i mport . xsl , which — as the name suggests — should be imported in the logicsheets where you
want to use those templates.

The features provided by the "misc" logicsheet are described in the subsections following.

3.2.2.1. Setup

The misc logicsheet matches the <page> element and inserts some XML elements at the start and
the end of the <page> subtree. The XML thus generated looks like this:

'<'pége xm ns: u=http://an. danet. de/ cocoon/util >
<u:reload-url href="..."/>
<u:link-base-url href="...">

<l-- Any XM. between <page> and </ page> fromthe XSP -->

<u: messages>
<u: nessage>U nessage</ u: nessage>
</ u: nessages>
</ page>

The reload URL can be used to reload the page as displayed. Its computation is described in the
javadoc of de. danet . an. util.cocoon. CocoonlUt i | method def aul t Rel oadUr | . The
link base url should be used as base for all URLSs generated in the target HTML code. <er r or >
elements are generated for al error messages added during request processing with Co-
coonUtil.addError.

3.2.2.2. <get - et hod- par an»

Tries to find a parameter value for a Java method cal first as attribute, then as child element
<m sc: par anmet er > of the current node. See the item below for an example.

3.2.2.3. <gener at e- mappi ngs>

10

Cdlls gener at eMappi ngs in de. danet. an. util.cocoon. Mappi ng. Generates map-
pings for internationalization. The template matches XML like:

<m sc: gener at e- nappi ngs key="sone. key. scope" >
<m sc: paranet er name="properties">
sone_file.properties
</ m sc: par anet er >
</ m sc: gener at e- mappi ngs>

and generates mappings for the keys thus selected. The result may e.g. look like this:

Draft

Global Stylesheet Draft

<mappi ngs xm ns="http://an. danet. de/ cocoon/ util">

<mappi ng key="addMenber " >H nzuf igen</ mappi ng>

<mappi ng key="11i st Capti on">M tarbei t er ibersi cht </ mappi ng>
</ mappi ngs>. ..

3.2.2.4. <gener at e- pref erences>

Cdls generatePreferences in de.danet.an.util.cocoon. prefs. UserPrefs.
Generates the user specific preference entries. The template matches XML like:

<m sc: gener at e- pref erences key="sone. key. scope"/ >
and generates preferences for the keys thus selected. The result may e.g. ook like this:

'<b'r ef erences xm ns="http://an. danet. de/cocoon/util">
<preference key="sort-info">[Onanme| Oascendi ng] </ pref erence>
</ preferences>. ..

3.3. Global Stylesheet

3.3.1.

3.3.2.

3.3.3.

The global stylesheet provides several useful templates that can support the implementation of a
page specific stylesheet.

General page setup

The global stylesheet includes a template that matches the root of the document to be transformed.
This template generates the HTML "frame", i.e. the <HTM.>, a <HEAD> block with atitle and a
link to the global stylesheet and a <BODY> with the collected errors as initial content. It then calls
xsl : appl y-tenpl at es for/ / body and closes dl tags.

Accessing internationalized text

Thetemplate g: get - mappi ng can be used to retrieve atext string for agiven key.

Parameters:
key the lookup key for the mapping.

The string is taken from a list of selected mapping entries (see Section 3.2.2.3
“<gener at e- mappi ngs>" [10]) which have been generated from a mapping file
| 18n_xx. properti es (with "xx" being the language identifier). The language dependant fileis
selected according to the current language setting of the environment.

Accessing user preferences

The template g: get - pr ef er ence can be used to retrieve a user specific preference value for a
given key.

Parameters:

key the key to the preference entry.

11

Draft

3.3.4.

3.3.5.

3.3.6.

3.3.7.

12

Encoding a link parameter Draft

defaul t - Optional default value which is returned, if key cannot be found within the prefer-
Val ue encelist.

The entry is taken from a list of user specific preference entries (see Section 3.2.2.4,
“<gener at e- pr ef er ences>" [11]) which have been retrieved from the database.

Encoding a link parameter

Thetemplate g: ur | - encode can be used to encode a string that is to be used as parameter in e.g.
the hr ef attribute of the anchor element. Parameters in an hr ef are encoded as key value pairs
(e.g. href ="acti on?keyl=val uel&key2=val ue2") where the keys and values must be x-
www f or m ur | encoded. Thistemplate does the encoding.

Parameters:

val ue the string to be encoded.

Adding a parameter to a URL

The template g: add- par am t o- hr ef appends the given name/value pair to a given URL. A
"?" or "&" isinserted as separator as appropriate. The template calls g: ur | - encode for the given
name and value before appending them.

Parameters:

hr ef the link base URL.

name the request parameter name.
val ue the request parameter value.

Replacing a parameter within a URL
Thetemplate g: r epl ace- par am i n- hr ef replaces the given parameter value within the given

URL. If the parameter does not exidt, it will be added. The parameter syntax of this template is
identical with g: add- par am t o- hr ef (see Section 3.3.5, “Adding a parameter to aURL” [12]).

Generating links

There is a specia template g: i nl i ne-1i nk available for creating text or image links. Usually
thistemplateis called by referencing alink node with an attribute hi nt settoi nl i ne.

Parameters:

t ext the link text (for text type links).

i mage the link image (for image type links).
Note

The image attribute has precedence against the text. If both attributes are supplied, the text
is used as additional ALT information.

t ar get the link target window.

Draft Generating forms and fields Draft

hr ef the link destination URL. If the attribute hr ef is not defined for the current node
but the ancestor has a link-base-url node with such an attribute and the parameter
par ams is set, the attribute hr ef of the that node is used. Otherwise, the paramet-
er hr ef of thetopr el oad- url isused (see Section 3.2.2.1, “Setup” []) .

par ams additional parameters for the link. The given string is appended asiis, i.e. al names
and values must be x- ww f or m ur | encoded.

di sabl e flag indicating, if link isto be disabled.

3.3.8. Generating forms and fields

When creating a new form, the template g: f or m set up should be called to set up some basics.
The initialization includes the setting of the action attribute with al its href parameters, creation of
the hidden fields, described by the href parameters and the setting of the accepted charset.

Parameters:

hr ef the action URI to be taken. If the attribute hr ef is not defined for the current node
but the ancestor has a link-base-url node with such an attribute and the parameter
par amns is set, the attribute hr ef of that node is used. Otherwise, the parameter
hr ef of thetopr el oad- url isused (see Section 3.2.2.1, “ Setup” []).

par ams additional parametersfor thelink.

Note that name/value pairs passed in href or par ans are converted to hidden fields. As they
come as part of alink or link parameters, they are assumed to be x- www« f or m ur | encoded and
will be decoded when the hidden field is created.

There are severa templates for the generation of input fields. All those templates are best used for
matching a given dialog hint with a specific type. First of all, there isthe template g: t ext - i nput

for generating single- or multi-row input fields as well as password fields. Usually this template is
called by referencing adialog hint for a node that should be displayed for editing.

Example:
<Wor kf | owPr ocess Name="Account anl egen" type="account_neu" key="1">
<di al og-hint attribute="Name" type="text" maxl ength="50"/>
<di al og-hint attribute="type" type="text"/>
<di al og-hint attribute="key" type="text"/>
</ Wor kf | owPr ocess>. ..
Parameters:
| abel label text to be displayed above the input field.
si ze size specification for the input field.
name the name of the field. By default, this value is taken from the attribute
attri but e of the node.
val ue default text value for the field. If this template is applied to a dialog
hint, the default value is taken from the attribute with the same name
of the parent node (see example above). If no such exists, the text
value of the node is taken.
r ows number of rows to be diplayed. If the number of rows is greater than

1, atext areais created.

13

Draft

Accessing the reload-url Draft
type type of field. If the node has an attribute t ype with the value t ex-

t I nput, thetypeissettot ext , otherwiseit is set to passwor d.
style reference to a css style declaration (default: i nput Al i gnV).
attriblLength input length limitation. Normally taken from attribute nax| engt h.

Next, the template g: choi ce can be used to create a selection of different values as an input. Usu-
ally this template is called by referencing a dialog hint of type choi ce for a node that should be
displayed for selection.

Parameters:
name the name of the field.

The selection values are thereby taken from the child nodes "option". The display values are created
by mapping these values.

3.3.9. Accessing the reload-url

For an easy access to the often needed r el oad- ur | (see Section 3.2.2.1, “Setup” []), this value
isprovided in avariablecaled g: r el oad-url .

3.3.10. Creating a new sort string

A sort string, describing the current sort order for al sortable topics, is build like this:
{0t opi cX; Oorder X} { 1t opi cY; 1orderY}. .. with a maximum of 10 (O to 9) different
items supported. Each topic forms (in combination with access method used in xdl:sort; see Sec-
tion 3.4, “Sorting table columns” [18]) an expression to select the appropriate attribute (or node
value) to build the sort order. If atopic is chosen for toggling the sort order, not only the sort order
for that topic has to be switched but also the sequence of all topics is changed, setting this topic at
the first place. The task of creating such a new sort string is done by the template
g: get-newsort-string.

Parameters:

sort-info Thecurrent sort info string.

sort - The topic that is chosen to be toggled.

topic

url - Flag, indicating if the result sort string should be url-encoded.
encode

3.3.11. Creating a table header entry for a sortable
column

14

Thistemplate g: cr eat e- sort abl e- header - ent r y can be used to create a header entry for a
sortable column in a table. This entry consists of a given header text and the appropriate sort link
image (depending on the current sort order an priority of the topic). The link performs the action of
setting the user preference value for the current sort-info with the corresponding sort string (see Sec-
tion 3.3.10, “Creating a new sort string” [14]).

Parameters:

header - The header text to be printed.
Text

Draft Creating a tab menu Draft

sort-info Thecurrent sort info string.

sort - The topic that is displayed for toggling as it is named within the sort info string.
topic

key- Prefix of the (generated) preference entries "sort-info". This is usually the same
prefix prefix as used for the mapping entries.

3.3.12. Creating a tab menu

This template g: cr eat e- t ab- menu can be used to create a tab menu to be placed (usualy) at
the top of awindow. Given information about al the entries (items) and which entry should be se-
lected, atable with asingle row is created, that holds each link element of the talb menu in a separate
cell. The links call the URL provided within the item definition or reload the current URL
(reload-url) with an additional request parameter cont ext - i nf o, defining the current frame con-
text. The request parameter cont ext - i nf o should either be provided within the item's URL or
the last element of the item's key path is taken by default.

To create atab menu, acall to thistemplateis all that has to be done. This defines the tab entries and
the default selection.

By default, the tab marked as selected is chosen using the value of the stylesheet parameter sel ec-
ted-tab. If another tab entry should be selected, it can be defined as an element named
<g: sel ected-tab> (xmml ns: g="http://an. danet. de/ cocoon/ gl obal ") within
the input xml data. If both element and parameter are provided, the text value of the xml element
takes precedence. Thus, the template parameter is usually used only for initialization purpose.

Note

The mapping of the frame context to the appropriate tab selection has to be defined within
the sitemap configuration. It is good practice to create the eement named
<g: sel ected-tab> (xmml ns: g="http://an. danet. de/ cocoon/ gl obal ")
within the page correspondend xsp, depending on the selected tab information provided by
the sitemap configuration.

Parameters:

itens A list of al tab entries, described as a string with the following format:
"keyl<, url 1>; key2<,url 1>;...". The key is mapped, using the map-
ping mechanism as described in Section 3.3.2, “Accessing internationalized
text” [11].

sel ect ed- The key name of the current selected tab entry. If no match is found, no tab is

key selected. For multiple matches, each matching tab is selected.

3.3.13. Formatting date and time
Thetemplate g: f or mat - dat e- t i me can be used to build a formatted string for a given date and

time. Its computation is described in the javadoc of
de. danet . an. util.cocoon. CocoonUti | methodf or nat Dat eTi ne.

3.3.14. Additional string operations

The template g: ends-wi t h can be used to test if a given string ends with another string. Thisis
an extension to the XPATH 1.0 string core functions.

3.3.15. Generating drop down select box

15

Draft Generating drop down select box Draft

Thetemplate g: choi ce can be used to create a selection of different values as an input. This tem-
plate can be applied by referencing a dialog hint of type | i st for a node that should be displayed
for selection or it may be called by name.

The following is an example of how to create a select box of all activities for a given workflow pro-
cess. This select box includes an empty option and if any pr ocess child nodes of process-
sunmar i es exists, a wildcard option will be included, too. The ' account application
i ssued' isassel ect ed-t ext selected initialy in the drop down select box.

examplel.xml:

<process-sunmari es>
<di al og-hint type="list"/>
<process key="1" state="open.runni ng.runni ng">
<di al og-hint attribute="key" type="text" naxl ength="30"/>
</ process>
</ process- sunmari es>
<Wor kf | owPr ocess Name="apply account" ngr="account_ new' key="1">

<Activities>
<di al og-hint type="list"/>
<Activity key="1" Name="account application issued">
<di al og-hint attribute="key" type="text"/>
</Activity>
<Activity key="2" Nane="account application handl ed">
<di al og-hint attribute="key" type="text"/>
</Activity>
</Activities>

</W>'r kf | owPr ocess>. . .
examplel.xd:

<xsl : appl y-tenpl ates sel ect="./Wr kfl owProcess/ Activities/dialog-hint">
<xsl :w t h- param name="nane" sel ect=""activityKey' "/>
<xsl:w t h-param name="styl e" select=""data'"/>
<xsl:w th-param name="enpty-itent select=""true' "/>
<xsl:w th-param nanme="wi | dcard-itent sel ect="//process-sunmaries/process!
<xsl:w t h-param nanme="sel ected-text" sel ect=""account application issued
<xsl :w t h- param nane="use- choi ce-| abel -tenpl ate" select=""true'"/>
</ xsl : appl y-t enpl at es>

<xsl:tenpl ate match="Workfl owProcess/ Activities/Activity/dialog-hint"
node="choi ce-| abel ">
<xsl :val ue- of select="../@ame"/>

</ xsl : tenpl at e>

result: examplel.html

<sel ect name="activityKey" size="1" class="data">
<option val ue=""></opti on>
<option val ue="*">*</opti on>
<option sel ected="true" val ue="1">account application issued</option>
<option val ue="2">account applicati on handl ed</option>
</sel ect>

The example below shows all the Val i dSt at es and the st at e of the Wor kf | owPr ocess in
drop down select box using the templateg: choi ce.

16

Draft Generating drop down select box Draft

example2.xml;

<mappi ngs xm ns="http://an. danet. de/ cocoon/util ">
'<'m'appi ng key="st at e. open$r unni ng$r unni ng" >l n Bear bei t ung</ mappi ng>
</ .m.a.ppi ngs>
<Wor kf | owPr ocess Nane=" apply account" ngr="account_ new' key="1">
<St at e>
<di al og-hi nt type="key" maxl ength="20"/>open. runni ng. runni ng
</ St at e>
<Val i dSt at es>
<di al og-hint type="list"/>
<St at e>
<di al og- hi nt type="key"/>open. not _runni ng. suspended
</ St at e>
<St at e>
<di al og- hi nt type="key"/>cl osed.term nated

</ St at e>
</ Val i dSt at es>

</V\b'r kfl owPr ocess>. . .
example2.xd:

<xsl :apply-tenmpl ates sel ect="./ValidStat es/di al og-hint">
<xsl :w t h- param name="nanme" sel ect=""MP8" "/ >
<xsl:w t h-param name="styl e" select=""data'"/>
<xsl :w t h- param nane="key-prefi x" select="'state.'"/>
<xsl:w th-param nane="sel ected-itenf' select="./State"/>
</ xsl : appl y-t enpl at es>

result: example2.html

<sel ect nane="MP8" size="1" class="data">
<option sel ected="true" val ue="open. runni ng. runni ng">l n Bear bei t uni
<option val ue="open. not _runni ng. suspended" >Unt er br ochen</ opti on>
<option val ue="cl osed. t er mi nat ed" >Beendet </ opt i on>

</ sel ect >
Parameters:
name The name of the select box.
style Reference to a css style declaration.
key- prefix Prefix used for the mapping entries. It is mandatory if

the dialog-hint type of this item is key and the text
value is different from its mapping entry. As shown in
exanpl e2. xnl , St at e has the dialog-hint type of
key, itstext value open. r unni ng. r unni ng is dif-
ferent from the mapping entry of
st at e. open$runni ng$runni ng. If state. is
given as the key-prefix, the mapped result is I n
Bear bei t ung and used as text of the opt i on inthe
select box.

17

Draft

Sorting table columns Draft

key-delim Delimiter used for tranformation of the mapping
entries, it is optional and has a default value of $. As
shown in exanpl e2. xm , the mapping entry of
st at e. open$r unni ng$runni ng has $ as key-
delim

sel ected-item Item to be initially selected in the drop down box, it is
optional (default: /. .). Depending on the dialog-hint
type of this node (key or t ext), either the mapped
text value of this key or the text value of this node is
shown in the drop down box. If this node is not in-
cluded in the node of the parameter i t ens, it is added
to the drop down box automatically.

sel ect ed-t ext given text to be selected in the drop down box, it is op-
tional (default: /. .). If this text is not identic to the
mapped text value or text value of any node of the
parameter i t ens, it is added to the drop down box
automatically. This parameter is an aternative to se-
| ected-item If neither sel ected-item nor
sel ect ed-t ext isgiven, no item is initially selec-
ted in the drop down box.

itens list of nodes used to create different values in the select
box. This value is mandatory if this template
g: choi ce iscalled and optional if thistemplate is ap-
plied. In the latter case the following nodes are selec-
ted: ../*/dialog-hint[]@ype="text' or
@ype="key']).

use-choi ce- | abel -tenpl ate flag, indicating if the choice labels of the given items
which are shown in the select box should be different
from the text values of the individual item node. If true,
then one customized template matching the dialog-hint
with mode choi ce- | abel must be created, in which
the choice label is determined, see exanpl el.

enpty-item flag indicating if an empty option in the select box
should be generated.
Wil dcard-item If set to a non empty node set, a wildcard option in the

select box should be generated.

Note that the template g: choi ce can be called or applied. The difference is applying this template
to a given node assumes this node is a dialog-hint node and has an attribute t ype with the value of
| i st, otherwise thistemplate will not be called and as a result no select box will be rendered.

3.4. Sorting table columns

18

In order to make columns of atable sortable, the following steps have to be taken:

 Since sorting is performed using the user preferences (see Section 3.3.11, “Creating a table header
entry for a sortable column” [14]), make sure that
de. danet.an. util.cocoon. prefs. User Prefs is part of the action list of the appro-
priate sitemap file.

Furthermore, generation of the preference entries has to be enabled within the appropriate xsp file
(see Section 3.2.2.4, “<gener at e- pr ef er ences>" [11]).

» The current sort information should be stored in avariable, using the following template:

Draft Sorting table columns Draft

<xsl:cal |l -tenpl ate name="g: get - pref erence" >
<xsl : wi t h- par am name="key" select="'sort-info' "/>
<xsl : wi t h- par am name="def aul t Val ue" >
<xsl :val ue-of sel ect="concat('{0Otopic; Oorder}', ...)"/>
</ xsl : wi t h- par an®
</ xsl:call-tenpl at e>

defining a default sort order and priority for each sortable column (see Section 3.3.11, “Creating a
table header entry for a sortable column” [14]).

For each sortabl e table column, the column header should be build as follows:

<xsl : cal | -tenpl at e nane="g: creat e-sort abl e- header-entry">

Within the template, creating al table rows is usually performed as follows: <xsl : f or - each
sel ect="...">. For each sortable column (i.e. entry in the sort-info string), the following
xdl:sort instruction has to be added (example for selection of the declared attribute with sorting
priority "0"; for a generic approach to select the column value, xal an: eval uat e may be used
instead to build the select expression):

<xsl : sort
sel ect =" @[nanme() =substri ng- bef ore(substring-after($sort-info,concat ($g: 1t
order="{substring-before(substring-after($sort-info,';0"),"'}")}"
data-type="text"/>

with the "0" value increased according to the descending priority of the entries.

19

20

Draft Draft

Chapter 4. Implementation Guidelines
4.1. Logging

Logging is based on the logging-commons [http://jakarta.apache.org/commons/logging.html] lib-
rary.

4.1.1. General usage

Logs, i.e. instances of or g. apache. cormons. | oggi ng. Log MUST be defined as

private static final org.apache. conmons. | oggi ng. Log | ogger
= org. apache. conmons. | oggi ng. LogFact ory. get Log(Def i ni ngCl ass. cl ass);

Def i ni ngC ass isthe class that defines| ogger as attribute. Usage of the attribute name | og-
ger for thelog is mandatory.

4.1.2. Using priorities

When assigning priorities to messages, keep in mind that these messages are read and evaluated by
the system administrator.

FATAL The FATAL priority designates very severe error events that will presum-
ably lead the application to abort. Due to the archtitecture of the applica-
tion, it is hard to think of any circumstances where this situation can arise.

ERROR The ERROR priority designates error events that might still allow the ap-
plication to continue running. This priority should be used to inform the
system administrator that the program could not proceed as expected dur-
ing development, e.g. because some resource is unexpectedly not available.

WARN The WARN priority designates potentially harmful situations. This priority
should be used when the application can circumvent an unexpected situ-
ation but can't be sure if the solution found is what the user expected.

I NFO The | NFO priority designates informational messages that highlight the
progress of the application at coarse-grained level.

DEBUG The DEBUG priority designates fine-grained informational events that are
most useful to debug an application. Usually, debug log messages MUST
be removed from the code after successful termination of the module im-
plementation task. The necessity to remove debugging messages is not
moderated by logdj's ability to filter messages. Debug messages are often
used to find an error during implementation and amount to a lot of code
lines that make code less readable. Leaving them "just in case" thus re-
duces code quality.

There may, however, be circumstances in which certain messages can be
useful even after completion of the implementation. In those cases, debug
log messages may be left in the code. The availability of such debugging
support and the log4j category that enables it MUST be documented in
javadoc or one of the manuals.

4.1.3. Logging exceptions

Stack traces from exceptions contain valuable debug information, as the included line numbers lead

21

http://jakarta.apache.org/commons/logging.html
http://jakarta.apache.org/commons/logging.html

Draft

Ul Messages Draft

directly to the cause of the error. Stack traces are, however, rather long and make reading the log file
difficult.

In order to avoid unnecessary stack traces in the log, we define the following rule: stack traces are
logged at the point where information from the stack trace is discarded.

This rule forbids logging in catch blocks that simply re-throw the exception, as we may assume that
the exception will be logged in the calling code (if the rule has been applied correctly):

} caibh(SorreExcepti on sx) {
/1 do sonethi ng
t hrow sx;

On the other hand side, the rule requires logging exceptions in catch blocks that ignore a specific ex-
ception aswell asin catch blocks that create a new exception based on a caught exception:

} cat ch(SoneExcepti onOne sx) {

/1 cannot happen because ...

| ogger.error (sx.getMessage(), sx); // just in case
} catch(Q her Exception ox)

| ogger.error (ox.getMessage(), ox);

t hr ow new SonmeNewExcepti on (ox. get Message());

The latter case needs further refinement. As an exceptional case, a caught exception should not be
logged if it is embedded in a newly created and thrown exception as "causing exception” and this
wrapper exception is known to output the causing exception when printed. An example for this kind
of exceptionsisthej avax. ej b. EJBExcepti on:

} caiéh(SorreExcepti on sx) {
/1 maybe do sonet hing, but do not | og!
t hr ow new EJBException (sx);

Of course, exceptions should not be logged if they are expected to occur in the context and indicate
acertain result:

} caiéh(d)j ect Not FoundException onfe) {
/1 object does not exist
return false;

4.2. Ul Messages

22

The messages generated in the Danet Workflow Component (Ul Messages) can be logged in the
user interface. To archieve it, first of all, a session related logging context must be establisched by
caling the method set Ul LogCont ext of de. danet.an.util.cocoon. CocoonlUtil.
After that, if any message needs to be logged in the user interface, cals the methods of
de. danet. an. util.cocoon. CocoonUtil (eg. | ogErrorMapped), then the messages
are logged to categories handled by de. danet . an. util .| og4j . Li st Appender (see Sec-
tion 4.1, “Logging” [21]). In the end, the method gener at eMessageli st of CocoonUti |

must be called to generate the XML representation of the Ul messages. This XML output will be
transformed HTML using the template u: nessage of the global stylesheet gl obal . xsl .

Our provided support logicsheet (see Section 3.2.2, “Support Logicshest” [9]) offers an example
how to log Ul messages.

Draft Transactions and separation of busi- Draft
ness logic

4.3. Transaction Handling

While implementing EJBs, it isimport to keep the semantics of transaction handling in mind. By de-
fault we use container managed transactions. Thisimplies that the EJB container commits a transac-
tion automatically for successful completion of an EJB method. In addition the EJB container rolls
back automatically the transaction, if an exception is thrown and the exception is either of type
Runt i neExcept i on or of type Renpt eExcept i on. These exceptions are of a so-called cat-
egory system exception, in opposite to the category of application exceptions.

Throwing an application exception instead requires dooming of a possibly open transaction by the
EJB itself. Thisis done by calling the method set Rol | backOnl y() of the associated EJB con-
text. Subsequently, EJBs within that transaction may check the transaction state by calling the meth-
od get Rol | backOnl y() of the associated EJB context.

Note that a client's perspective on transactions is by default different from the perspective taken
when implementing an EJB. An EJB acting as client of other EJBs usually has an associated trans-
action context, i.e. rolling back will undo previous calls to the same or other EJBs. A call from an
EJB client has no transaction context unless explicitly established (and it is a general recommenda-
tion not to use transaction contexts in a client). Thus every call is committed individually.

Transactions and separation of business logic

Due to the layered approach (see Section 2.1, “ Separation of business logic” [3]) a method may be
fully implemented in the domain layer. It has to be kept in mind, however, that the domain layer
does not know about transaction handling. While things usually work as intended as far as system
level exceptions are concerned, special care must be taken for application exceptions.

If an application exception should cause a transaction rollback, the EJB must therefore implement a

wrapper:
public void m) {
try {
super.m();

} catch (ApplicationExceptionXYZ e) {
cont ext . set Rol | backOnl y();
t hrow e;

As an exceptional aternative (see below), the domain level implementation may assume that the
persistence layer provides away to reset the persistent attributes and may define an abstract method
set Rol | backOnl y() . This method is called whenever the domain layer interrupts execution
(i.e. throws an exception) and cannot reset already modified persistent attributes to consistent val-
ues. The domain layer should, however, reset the values itself whenever possible (or even better,
avoid modifications before doing checks that may lead to exceptions) as this is usualy more effi-
cient and matches the spirit of adomain level implementation better.

When to roll back

According to the EJB specification concepts, application exception should — in general — not roll
back transactions. On the other hand side, however, a client may assume that a call to an EJB meth-
od of the workflow API does not |eave the workflow engine in an inconsistent state.

As a consequence, we should roll back if any modifications have been made to data before the ap-
plication exception has been thrown. Note that application exceptions are often thrown before modi-
fications as they result from checks being made before the method is executed.

If the necessity to roll back cannot be related with an exception type, the domain level must inform
the persistence level using an abstract method as described above.

23

Draft How to write a tool Draft

Caveats

Note that changing the transaction behavior of a method may have a significant impact on the work-
flow engine. EJB method implementations assume — unless other knowledge exists — that applica
tion exceptions do not roll back transactions. Subsequent calls to EJBS method from an EJB acting
as client are usually part of atransaction. Changing a called method's semantics such that it triggers
transaction rollback will cause the complete sequence of calls to be rolled back and thus affect the
observed behavior of the calling method.

4.4. How to write a tool

An activity can be implemented by an application program (Tool) which links to entity Workflow
Application. To write atool, first of al, you need to define an application within the process defini-
tion in the scope of package or the dedicated process, see the following example 1.

example 1:

<Wor kf | owPr ocess | d="exanpl el">
<Pr ocessHeader/ >
<Appl i cati ons>
<Application |Id="Mil Tool ">
<Descri pti on>Tool to send il
</ Descri ption>
<For nmal Par aret er s>
<Fornal Paraneter |d="recipient" Mde="IN'>
<Dat aType>
<Basi cType Type="STRI NG'/ >
</ Dat aType>
</ For mal Par anet er >
<For mal Par anet er |d="nmessage" Mode="IN">
<Dat aType>
<Basi cType Type="STRI NG'/ >
</ Dat aType>
</ For mal Par anet er >
</ For mal Par amnet er s>
<Ext endedAttri but es>
<Ext endedAttri bute Name="Inpl enentati on">
<vx: Tool Agent O ass="de. danet. an. wor kf| ow. t ool s. Mai | Tool ">
<vX: Property Nanme="Def aul t Sender " >anyone@bc. conx/ vx: Property>
</ vx: Tool Agent >
</ Ext endedAttri but e>
</ Ext endedAt tri but es>
</ Appl i cation>
</ Appl i cati ons>
<Dat aFi el ds>
<Dat aFi el d Id="recipient" |sArray="FALSE">
<Dat aType>
<Basi cType Type="STRI NG'/ >
</ Dat aType>
<Initial Val ue>mao@anet . de</ I ni ti al Val ue>
<Descri ption/ >
</ Dat aFi el d>
<Dat aFi el d | d="nessage" |sArray="FALSE">
<Dat aType>
<Basi cType Type="STRI NG'/ >
</ Dat aType>
<l nitial Val ue>account setted up</Initial Val ue>
<Descri ption/ >
</ Dat aFi el d>
</ Dat aFi el ds>

<Activities>
<Activity Id="feedback" Nane="account request feedback">
<I npl enent ati on>
<Tool |d="Mil Tool ">

24

Draft How to write a tool Draft

<Act ual Par anet er s>
<Act ual Par aret er >r eci pi ent </ Act ual Par anet er >
<Act ual Par anet er >nessage</ Act ual Par anet er >
</ Act ual Par anet er s>
</ Tool >
</ | npl enent ati on>

</ Activity>

</Ai:f ivities>
</ Wor kf | owPr ocess>

An application has parameters named Formal Parameters, differed by their I1d, Mode and DataType;
Mode indicates if the parameter is input- or output-parameter for this application. The implementa-
tion class of an application is declared in an Ext endedAt t ri but e named | npl ment at i on as
vX: Tool Agent . It can have properties for which aset method is to be implemented in the class.
Next you can refer the defined application in the dedicated activity, see the example 1 above. To call
the application the parameters named ActualParameters are to be defined. They must match the
Formal Parameters of the application definition in the correct order. The values of Actual Parameters
must not be identical with the Id of the FormalParameters, but a corresponding DataField identified
by its Id must be defined in the process definition. After you have defined the process definition,
you need to implement the class which is declared in the vx: Tool Agent . This class must imple-
ment the interfaces java. |l ang. Seri al i zabl e and
de. danet . an. wor kf | ow. spi s. ai i . Tool Agent which defines two methods: i nvoke
and t er mi nat e. In thei nvoke method the work is performed, the process data is updated with
the result of the work and then the doFi ni sh method of the Wor kf | owEngi ne is called with the
given activity and the upated process data. The work can be terminated in the method of t er mi n-

at e. Seethefollowing example 2.

Note

Please do not attempt to perform any method on the activity except key and uni queKey
before doing the work; otherwiese, the activity becomes part of the EJB transaction and is
locked, i.e. all accesses (even display in the management client) are deferred until the work
is performed completely.

example 2:

public void invoke(Activity activity, Formal Paraneter[] fornPars,
, Map nap) { , , ,
Wor kf | owEngi ne wfe = (Workfl owEngi ne) EJBULi | . cr eat eSessi on
(Wor kf | owEngi neHonre. cl ass, "java: conp/ env/ ej b/ Wor kf | owEngi ne") ;
wf e. doFi ni sh (activity, sendMail ());

private ProcessData sendMail () {
/1 do sending mail
Session mail Session = (Session) EJBUtil.| ookupJNDI Entry
("java: comp/ env/ mai | / W Engi ne") ;
/1 create a nmessage
Message nsg = new M neMessage(il Session);

/1 send the nessage
Transport.send(nsgq);
/1 build return val ue
ProcessData resData = new Def aul t ProcessDat a();
if (status !'= null) {
resDat a. put (status, "OK");

return resbDat a;

25

Draft How to write a tool Draft

26

Draft Draft

Chapter 5. Documentation

27

28

Draft

Draft

Chapter 6. Tips & Tricks
6.1. Testing stylesheet layout

While developing stylesheet files, it is often useful to test the correct behaviour of the new code
without the need to deploy the application. To achive this, the first step is to create a file with the
ravw input data for the stylesheet which can be done by cdling ht-
tp:/ /1 ocal host: 8080/ wor kf | ow acti on?debug=r an&. . . instead of ht -
tp://1 ocal host: 8080/ wor kfl ow acti on?... (parameters as needed for the URL to be
tested). By using this target, the raw data, created by the XSP is sent as the response and you can
savethisfilefor later use.

Retrieving the action URL

To achive a proper layout for every invoked link (which may in fact only lead to a part of a
frame), al act i on URLs are relocated to di spl ay URLSs (with an enhanced parameter
list). Thus, to retrieve the needed acti on URL, copy the link location within your
browser (before activating it) and paste the value to the new browser window. Then edit
this URL as described above.

Next, you use the data file, created above to test the stylesheet code by calling ant with the target
styl esheet -t est in the client directory of you context (eo.
...workflow clients/c2client). The parameters of this cal are - Dsr c=<PATH TO
RAW DATA FI LE> - Dstyl esheet =<STYLESHEET FI LENAME W THOUT PATH>. What
you get is the result of the stylesheet processing aa a file
...build/styl esheet-test/out.htmnl that canloaded with any browser.

29

30

Draft Draft

Index

G

g:add-param-to-href, 12
g:choice, 14, 16
g:create-sortable-header-entry , 14
g.create-tab-menu, 15
g:ends-with, 15
g:format-date-time, 15
g:form-setup, 13
g:get-mapping, 11
0:get-new-sort-string, 14
0.get-preference, 11
g:inline-link, 12
g:reload-url, 14
g:replace-param-in-href, 12
g:text-input, 13
g:url-encode, 12

31

32

	The Danet Workflow Component
	Table of Contents
	Introduction
	Chapter 1. Development Environment
	1.1. Personal Properties
	1.2. Building
	1.3. JBoss

	Chapter 2. Design Patterns and Practices
	2.1. Separation of business logic
	2.1.1. Introduction
	2.1.2. Our approach
	2.1.3. Compromises
	2.1.3.1. Making domain classes containers
	2.1.3.2. EJB binding
	2.1.3.3. Persistent attributes
	2.1.3.3.1. Declaring persistent attributes
	2.1.3.3.2. Implementing virtual attributes
	2.1.3.3.3. Handling Relations
	2.1.3.3.4. Handling Complex Values

	2.2. Generating XML views

	Chapter 3. Using Cocoon
	3.1. A web based front-end model
	3.1.1. Basic layout

	3.2. XSP development
	3.2.1. XSP structure
	3.2.2. Support Logicsheet
	3.2.2.1. Setup
	3.2.2.2. <get-method-param>
	3.2.2.3. <generate-mappings>
	3.2.2.4. <generate-preferences>

	3.3. Global Stylesheet
	3.3.1. General page setup
	3.3.2. Accessing internationalized text
	3.3.3. Accessing user preferences
	3.3.4. Encoding a link parameter
	3.3.5. Adding a parameter to a URL
	3.3.6. Replacing a parameter within a URL
	3.3.7. Generating links
	3.3.8. Generating forms and fields
	3.3.9. Accessing the reload-url
	3.3.10. Creating a new sort string
	3.3.11. Creating a table header entry for a sortable column
	3.3.12. Creating a tab menu
	3.3.13. Formatting date and time
	3.3.14. Additional string operations
	3.3.15. Generating drop down select box

	3.4. Sorting table columns

	Chapter 4. Implementation Guidelines
	4.1. Logging
	4.1.1. General usage
	4.1.2. Using priorities
	4.1.3. Logging exceptions

	4.2. UI Messages
	4.3. Transaction Handling
	4.4. How to write a tool

	Chapter 5. Documentation
	Chapter 6. Tips & Tricks
	6.1. Testing stylesheet layout

	Index

